• Title/Summary/Keyword: Ethylcellulose

Search Result 33, Processing Time 0.015 seconds

Controlled Release of Propranolol Hydrochloride(PPH) from PPH-Solid Dispersion System-Polyvinyl Alcohol Hydrogel Hollow Type Suppository (염산 프로프라놀롤-고체 분산계-폴리비닐알코올 하이드로겔 중공좌제로부터의 약물방출)

  • Chung, Jeen-Hoon;Lee, Jeong-Yeon;Ku, Young-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.4
    • /
    • pp.299-308
    • /
    • 1996
  • In order to develop the controlled release of a drug from the suppsitories, in vitro drug release and in vivo absorption in rabbits were investigated. Various suppository forms with hollow cavities, into which drugs in the form of fine powder or solid dispersion system(SDS) could be placed, were utilized. The polyvinyl alcohol(PVA) hydrogel as a base, and propranolol HCl(PPH) as a model drug were employed. In vitro drug dissolution studies showed that the dissolved amounts(%) of PPH from PPH-methylcellulose(MC)-SDS and PPH-ethylcellulose(EC)-SDS reached 100% and 63% in 4.5-hours, respectively. In the relative strength test for PVA hydrogel, PVA hydrogel became harder and more rigid when the number of freezing-thawing cycles and the ratio of PVA 2000 were increased. In vitro drug release profile revealed that the release rate(%) of PPH from PPH-EC-SDS and PPH-MC-SDS hollow type suppositories were sustained. The release amount(%) of PPH from PPH-EC-SDS hollow type suppositories was not affected by storage time, but since the use of hydrophilic MC made PPH diffuse into the hydrogel after it absorbed the water of base, the various release patterns were appeared as the storage time went by. In vivo absorption experiments with rabbits showed that PPH-EC-SDS(PPH : EC=1:3) hollow type suppository delayed the absorption of PPH, significantly. The $C_{max}$, $AUC_{0{\rightarrow}8}$ and MRT of PPH powder hollow type suppository were $196.37{\pm}5.63\;ng/ml$, 1105.26 ng/ml/min and 8.66 min, respectively. The $C_{max}$, $AUC_{0{\rightarrow}8}$ and MRT of PPH-EC-SDS(PPH : EC=1:3) were $91.30{\pm]14.14\;ng/ml$, 554.69 ng/ml/min, 235.99 min, respectively.

  • PDF

Red-Colored Phenomena and Morphochemical Characteristics of Red-Colored Substances in Ginseng Roots (Panax ginseng C.A. Meyer) (인삼 적변현상과 적변물질의 형태-화학적 특성)

  • 윤길영;양덕조
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.107-112
    • /
    • 2000
  • One of the physiologically important ginseng diseases is red-colored phenomena (RCP) that is caused by accumulation of red-colored substances on the epidermis of ginseng roots. Although RCP severely deteriorates the quality of ginseng products, there has been little information on what red-colored substance is and how RCP occurs. Therefore, the heavy losses of cultivators and ginseng industry are suffering by RCP, For this reason, we have investigated with the morphochernical characteristics of RCP to find out main cause of it. The red-colored substances (RS) on the epidermis of red-colored ginseng (RCG) were examined using inverted light microscope, confocal laser scanning microscope (CLSM)and furier transform infrared (FT/IR) spectrometer. Red brown substances were accumulated in the cell wall of the epidermis from early stage to late stage of RCC. Especially, cell wall of the late stage of RCG was covered with the sub-stances with 80~ 130 fm thick. Therefore, the cell wall of RCG cannot protect the ginseng root cells from the mechanical damages, bacteria and fungi. To analyse red substances of roots, RS were isolated from epidermis of RCG and extracted using various solvents. RS is strongly insoluble but it was bleached by oxidizing agents including 12% (v/v) NaOCl. Therefore, RS was Presumed to make up of high chelation power. The proriles of FT/IR spectra or both healthy ginseng (HEG) and RCG showed a significant difference at two wavelength,2857 cm$\^$-1/(C-H) and 1032 cm$\^$-1/(S=O), respectively. Furthermore, absorption peak of 2857cm$\^$-l/ appears on the only epidermis of RCG. The other peak is shown lower absorption rate on the epidermis of RCG than that of healthy ginseng. Also, FT/IR spectra of the mixture of carboxym-ethylcellulose (CMC) and iron (Fe$\^$3+/) were very similar to RCG spectrum profiles. One of a interesting fact is that the contents of phenolic compounds at the epidermis of healthy ginseng were highest. The results of these experiments sup-port the RCP was closely related with the chemical interaction between inorganic elements (Fe) of rhizosphere and organic matters (cellulose, cellobiose, cell sap, etc.) of ginseng roots.

  • PDF

Functional Properties of Cellulose-Based Films (셀룰로오스 포장지의 기능성)

  • Kim, Young-Ho;Park, Hyun-Jin;Kim, Dong-Man;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.133-137
    • /
    • 1994
  • Functional properties of packaging films prepared with cellulose derivatives were measured. As a presolvation treatments of celluloses, 95% ethanol solution for methylcellulose (MC), hydroxypropyl-methylcellulose (HPMC) and ethylcellulose (EC) and water for hydroxypropyl cellulose (HPC) were used. For film sheeting, the ethanol concentration of final cellulose solution should exceed 50% for MC, HPMC and HPC and 80% for EC. Thickness and functionalities of the prepared films were varied by type, molecular weight and viscosity of the cellulose and kind of plasticizer used. Tensile strength of MC, HPMC and HPC films were $67.7{\sim}275.4\;MPa$, $124.6{\sim}260.0\;MPa$, and $14.8{\sim}29.4\;MPa$, respectively. The strength of MC and HPMC films was higher than that of low density polyethylene (LDPE) films $(13.1{\sim}27.6\;MPa)$. Solubility of the cellulose films varied widely by plasticizer used and the films containing polyethyleneglycol (PEG) as a plasticizer was more soluble than the films by glycerol. Maximum water vapor permeability and oxygen permeability of the cellulose films was more than 1,000 folds and less than one-twelfth of the LDPE film, respectively.

  • PDF