• Title/Summary/Keyword: Ethofenprox

Search Result 19, Processing Time 0.028 seconds

Toxicity of several insecticides to Dichromothrips smithi Zimmermann(Thysanoptera : Thripidae) (난총채벌레의 살충제 감수성)

  • Ahn, Ki-Su;Lee, Ki-Yeol;Kang, Hyu-Jung;Park, Sung-Kyu;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.244-249
    • /
    • 2002
  • This study was carried out to investigate the toxicities of 22 insecticides to Dichromothrips smithi. Insecticidal activity was evaluated by testing systemic action and residual effect in laboratory. All insecticides used in this study did not affect on the egg of D. smithi, although organophosphates such as fenitrothion, fenthion, methidathion, phenthoate, and phenthoate+ethofenprox suppressed the egg hatchability completely. On D. smithi larva fenitrothion, fenthion, methidathion, phenthoate, ethofenprox, thiamethoxam, abamectin, chlorfenapyr, emamectin benzoate, fipronil, spinosad, and phenthoate+ethofenprox showed 100% insecticidal activity. On D. smithi adult fenitrothion, fenthion, methidathion, phenthoate, ethofenprox, abamectin, emamectin benzoate, fipronil, spinosad, and phenthoate+ethofenprox showed 100% insecticidal activity. Root-uptake systemic effects of phenthoate on the larva of D. smithi was 43.3%. Whereas, systemic effect of other insecticides was less than 20%. Insecticide with more than 80% residual effect for 7 days after treatment were fenitrothion, fenthion, methidathion, phenthoate, ethofenprox, emamectin benzoate, fipronil, spinosad, and phenthoate.

Susceptibility of greenhouse whitefly, Trialeurodes vaporariorum (Homoptera: Aleyrodidae) against commercially registered insecticides in Korea (국내등록사용중인 살충제에 대한 온실가루이의 감수성)

  • Kim, Chang-Woo;Kim, Jeong-Wha;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.75-81
    • /
    • 2000
  • These studies were carried out to investigate the toxicities of 38 registered insecticides to the sweetpotato whitefly (Trialeurodes vaporariorum). Insecticide activities were evaluated by testing systemic action and residual effect in the laboratory, and control efficacy in the greenhouse. All experiments were tested at the recommended concentration(ppm) of each insecticides. Insect growth regulators (IGRs), only pyriproxyfen showed over 90% of ovicidal effect. The insecticides that showed over 90% of larvicidal activity oil 3rd nymphal instars were abamectin, acetamiprid, chlorpyrifos-methyl, imidacloprid, pyripoxyfen, and acetamiprid+ethofenprox. Insecticides with 100% adulticidal activity were abamectin, acephate, acetamiprid, benfurcarb, bifenthrin, furathiocarb, endosulfan, fenitrothion, imidacloprid, phenthoate, pymetrozine, acetamiprid + ethofenprox, ethofenprox + diazinon, furathiocarb + difluberlzuron, and triazamate+${\alpha}$-cypermethrin. Abamectin, acetamiprid, imidacloprid, pyriproxyfen, and acetamiprid + ethofenpox showed both residual effect and systemic activity. In tile control efficacy test on B. tabaci, 90% control values were obtained at 11th day after treatment of the insecticides including abamectin, acetamiprid, imidacloprid, pyripoxyfen and acetamiprid + ethofenprox. These results indicate that abamectin, acetamiprid, imidacloprid, pyriproxyfen and acetamiprid + ethofenprox can be used for tile control of B. tabaci in field.

  • PDF

Susceptibility of sweetpotato whitefly, Bemisia tabaci (Homoptera : Aleyrodidae) to commercially registered insecticides in Korea (외래해충인 담배가루이의 약제감수성)

  • Kim, Gil-Hah;Lee, Young-Su;Lee, In-Hwan;Ahn, Ki-Su
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.1
    • /
    • pp.51-58
    • /
    • 2000
  • These studies were carried out to investigate the toxicities of 43 registered insecticides to the sweetpotato whitefly(Bemisia tabaci, B. biotype). Insecticide activities were evaluated by testing systemic action and residual effect in the laboratory, and control efficacy in the greenhouse. All experiments were tested at the recommended concentration(ppm) of each insecticides. Insect growth regulators (IGRs), pyriproxyfen and teflubenzuron showed >95% ovicidal effect. The insecticides that showed >95% larvicidal activity on 3rd nymphal instars were abamectin, acetamiprid, imidacloprid, pyriproxyfen, and acetamiprid+ ethofenprox. Insecticides with >95% adulticidal activity were abamectin, acetamiprid, diazinon, endosulfan, fenitrothion, imidacloprid, methidathion, pirimiphos-methyl, pymetrozine, spinosad, acetamiprid+ ethofenprox, cartap kydrochloride+buprofezin, and fenpropathrin+fenitrothion. Abamectin, acetamiprid, imidacloprid, pyriproxyfen, and acetamiprid+ethofenprox showed both residual effect and systemic activity. In the control efficacy test on B. tabaci, 90% control values were obtained at 1st day after treatment of the insecticides including abamectin, acetamiprid, imidacloprid, pyriproxyfen and acetamiprid+ethofenprox but in pyriproxyfen, 90% control value was reached at 7th day after treatment. These results indicate that abamectin, acetamiprid, imidacloprid, pyriproxyfen and acetamiprid+ethofenprox can be used in control for B. tabaci in field.

  • PDF

Evaluation of Toxicity of Pesticides against Honeybee (Apis mellitera) and Bumblebee (Bombus terrestris) (꿀벌과 서양뒤영벌에 대한 농약의 독성평가)

  • Ahn, Ki-Su;Oh, Mann-Gyun;Ahn, Hee-Geun;Yoon, Chang-Mann;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.4
    • /
    • pp.382-390
    • /
    • 2008
  • This study was performed to evaluate the acute toxicity and residual toxicity of the 69 kinds of agrochemicals (41 insecticides, 18 fungicides, and 10 acaricides) against honeybee, Apis mellifera and bumblebee, Bombus terrestris. According to the IOBC standard, the toxicity showed below 30% was classified as non-toxic. Among 41 insecticides, five insecticides (acetamiprid, chlorfenapyr, thiacloprid, milbemectin, and buprofezin+amitraz) against the honeybee; eight insecticides (methomyl, thiodicarb, acetamiprid, chlorfenapyr, thiacloprid, abamectin, spino sad, buprofezin+amitraz) against the bumblebee did not show any toxic effect. Therefore, it thought to being safe. Other 18 fungicides and 10 acaricides were safe against the honeybee and bumblebee. In residual toxicity against the honeybee, eight insecticides (dichlorvos, methomyl, imidachlorprid, emamectin benzoate, spinosad, cartap hydrochloride, chlorfenapyr, and endosulfan) among 41 insecticides tested were safe at three days after treatment; however, sixteen insecticides (dimethoate, fenitrothion, fenthion, methidathion, phenthoate, pyraclofos, fenpropathrin, clothianidin, dinotefuran, thiamethoxam, abamectin, acetamiprid+ethofenprox, acetamiprid+indoxacarb, bifenthrin+imidacloprid, ethofenprox+phenthoate, imidacloprid+methiocarb) still remain high toxicity at eleven days after treatment. Against the bumblebee, residual toxicity showed as safe in seven insecticides (dimethoate, methidation, a-cypermethion, ethofenprox, indoxcarb, chlorpyrifos+a-cypennethrin, esfenvalerate+fenitrochion) at three days after treatment; however, eight insecticides (fenitrothion, pyraclofos, clothianidin, fipronil, acetamiprid+ethofenprox, chlorpyrifos+bifenthrin, ethofenprox+phenthoate, imidacloprid+methiocarb) still showed high toxicity at seven days after treatment. From above results, it will be useful information to select insecticides being safe and effective against the honeybee and bumblebee.

Activity and sublethal effects of several insecticides to the rice skipper, Parnara guttata Bremer et Grey (Lepidoptera : Hesperiidae) (줄점팔랑나비 (Parnara guttata)에 대한 몇 가지 살충제의 활성과 아치사농도에 의한 영향)

  • Oh, Hong-Kyu;Lee, Young-Su;Lee, Sang-Gae;Park, Hyung-Man;Choi, Yong-Seok;Ryu, Gab-Hee;Chang, Young-Duck
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.257-263
    • /
    • 2002
  • This study was carried out not only to investigate the toxicities of 12 registered insecticides on different developmental stages, but also to determine the sublethal effects on longevity and reproduction of newly emerged adult female and development of the next generation in the rice skipper, Parnara guttata. Fenitrothion, fenthion, cartap hydrochloride, ethofenprox highly suppressed egg-hatch. All insecticides treated showed high larvicidal activity on the 1st to 2nd instar larva. The insecticides showed higher larvicidal activities on the 5th instar larva were fenitrothion, fenthion, ethofenprox, fipronil, methoxyfenozide, tebufenozide and Bt. var. kurstaki. The sublethal doses of fenthion, tebufenozide, cartap hydrochloride, methoxyfenozide, ethofenprox, imidacloprid and fipronil shortened the longevities of newly emerged adult female from the treated larva ($3{\sim}4$ instar). BPMC, imidacloprid, ethofenprox, fipronil and methoxyfenozide delayed the preoviposition periods of adult females and decreased the number of eggs laid when they were treated at the larval stages of the previous generation. Ethofenprox caused severe sublethal effects on P. guttata offspring, completely blocking the production. All insecticides except fenitrothion affected the egg viability, and all eggs from the adult females emerged from the survivors treated larvae with imidacloprid or fipronil fail to hatch. IGRs, methoxyfenozide and tebufenozide showed an adverse effect on the development of next generation larva.

Control Efficacy of Ethofenprox against Soybean Pod Gall Midge, Asphondylia yushimai (Diptera: Cecidomyiidae) at Different Spray Time (Ethofenprox 처리시기별 콩꼬투리혹파리의 방제효과)

  • Bae, Soon-Do;Mainali, Bishwo Prasad;Kim, Hyun-Ju
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.3
    • /
    • pp.191-195
    • /
    • 2014
  • Occurrence of soybean pod gall midge (SPGM), Asphondylia yushimai, and soybean pod damage caused by SPGM, and its control efficacy treated with ethofenprox 20EC were first observed at Miryang from 2006 to 2008 in Korea. The typical damage symptoms in soybean pod caused by SPGM were brownish coloration and malformation. By beating method occurrence of SPGM was observed from beginning bloom of soybean and its collected population increased with season until middle September. Soybean pod damage caused by SPGM was heaviest at seeding date of 10th May, followed by 11th June and 26th May. Control efficacy against SPGM sprayed with one time application of ethofenprox 20EC at different spray time in soybean reproductive stage was highest with 92.9% at R2.5, followed by 87.9% at R2 and 83.6% at R3, and was low from about 19 to 66% at other spray time. Accordingly, the most effective spray time of insecticide for control of SPGM in soybean field was found to be R2.5 which is between R2 and R3.

Insecticidal Activity and Effect on Biological Characteristic of 16 Insecticides Against Phthorimaea Operculella (Lepidoptera: Gelechiidae) (감자뿔나방에 대한 16종 살충제의 살충활성과 생물적 특성에 미치는 영향)

  • An, Jeong-Jin;Park, Jun-Won;Kim, Ju-Il;Kim, Hyun Kyung;Koo, Hyun-Na;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.363-370
    • /
    • 2013
  • Susceptibility of each developmental stage of Phthorimaea operculella (Lepidoptera: Gelechiidae) were investigated using 16 insecticides which are available in the market in Korea. For the eggs and pupae, only spinosad showed a 71.1% inhibition rate for egg hatchability and a 66.7% inhibition rate for emergence. For the 3rd instar larvae, the feeding toxicities were over 90% for fenitrothion ($LC_{50}$ 336.6 ppm), esfenvalerate ($LC_{50}$ 8.6 ppm), ethofenprox ($LC_{50}$ 35.7 ppm), and emamectin benzoate ($LC_{50}$ 0.05 ppm). Furthermore, the contact toxicities were over 90% for esfenvalerate ($LC_{50}$ 0.87 ppm), ethofenprox ($LC_{50}$ 16.5 ppm), emamectin benzoate ($LC_{50}$ 0.53 ppm), and spinosad ($LC_{50}$ 2.48 ppm) at the recommended concentrations. Deltamethrin and spinosad yielded 100% mortality for adult P. operculella 48 h after treatment. The adult female fecundity was inhibited by deltamethrin, esfenvalerate, emamectin benzoate, spinosad and dinotefuran, which were significantly different from the control. The adult longevities (7.3-8.3 days) were reduced by approximately 1-2 days compared with the control (9.3 day). The emamectin benzoate maintained 100% insecticidal activity 14 days after treatment and ethofenprox maintained over 90% activity 7 days after treatment.

Toxicities and Control Effect of Three Insecticides to Greenhouse Whitefly, Trialeurodes vaporariorum and Sweetpotato Whitefly Bemisia tabaci (Homoptera: Aleyrodidae) (몇 가지 살충제의 온실가루이와 담배가루이의 생육 단계별 살충효과 및 방제효과)

  • Ha, Tae-Ki;Hwang, In-Cheon;Kim, Jong-Kwan;Song, Yoo-Han;Kim, Gil-Hah;Yu, Yong-Man
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.3
    • /
    • pp.207-215
    • /
    • 2003
  • This study was carried out to evaluate toxicities of 3 registered insecticides to greenhouse whitefly(GWF), Trialeurodes vaporariorum and sweetpotato whitefly(SWF), Bemisia tabaci, B-biotype. Insecticide activities were evaluated by testing systemic action, residual effect in the laboratory, and control efficacy in the greenhouse. All experiments were tested at the recommended concentration(RC), half and a quarter concentrations of RC of each insecticides. Acetamiprid showed 45%, 42% ovicidal effect to greenhouse whitefly and sweetpotato whitefly at 40 ppm, respectively. Acetamiprid showed more than 97% larvicidal activities on the 3rd instars larvae of GWF and SWF at the recommended and its half concentrations. On the adults of the two whitefly species, acetamiprid and acetamiprid+ethofenprox showed more than 92% mortality even at half of recommended concentrations. Acetamiprid and acetamiprid+ethofenprox showed both residual effect and systemic activity. In the control efficacy test on GWF and SWF, 90% control values were obtained at the 3th day after treatments of acetamiprid and acetamiprid + ethofenprox by application with recommended concentration. These results indicate that acetamiprid and acetamiprid+ethofenprox can be used in the control of the two whitefly species in field.

Effects of Sublethal Concentration of Insecticides On the Pupal Duration, Emergence, Adult Longevity and Oviposition of Tobacco Cutworm, Spodoptera litura (Fab.) (Lepidoptera : Noctuidae) (담배거세미나방의 유충에 처리된 살충제 아치사농도가 용기간, 우화율, 성충수명 및 산란에 미치는 영향)

  • 배순도;김현주;홍연규;조현제
    • Korean journal of applied entomology
    • /
    • v.43 no.2
    • /
    • pp.175-180
    • /
    • 2004
  • This study was conducted to determine the effect of sublethal concentrations ($LC_{10}$ and $LC_{30}$) of insecticides on pupal duration, emergence, adult longevity and oviposition of tobacco cutworm, Spodoptera litura Fabricius, when 3rd instar larva of tobacco cutworm was treated with insecticides of chlorpyrifos, ethofenprox, chlorfenapyr-bifenthrin and hexaflumuron-chlorpyrifos . Pupal duration of female and male were 6.9 days and 8.0 days at untreatment, and were 7.2 to 7.6 days and 8.3 to 8.6 days at insecticide treatment, respectively. Thus pupal duration at the insecticide treatment was slightly longer than that at the untreatment, and that of the males was slightly longer than that of the females even though significant difference between sublethal concentrations and among insecticides was not observed. Percent mergence was 88% at untreatment and ranged from 79% to 95%, in particular which showed above 91% treated with chlorfenapyr-bifenthrin and ethofenprox, at insecticide treatment. Adult longevity was 7.7 days and 7.9 days for female and male at untreatment respectively, and 7.1 to 8.4 days for female and 7.7 days to 9.0 days for male at treatment. There was a significant difference between insecticides and sublethal concentrations of insecticides except showed the longest adult longevity at hexaflumuron-chlolfyrifos treatment. Total number of eggs laid were less at treatment (778-948) than that (1,010) at untreatment regardless of sublethal concentrations of insecticides. Accordingly the pupal duration and oviposition of tobacco cutworm were affected at the insecticide treatment of sublethal concentration.

Effect of agrochemicals on mycelial growth and spore germination of a hyperparasite, Ampelomyces quisqualis 94013 for controlling cucumber powdery mildew (농약이 오이흰가루병 방제용 중복기생균 Ampelomyces quisqualis 94013의 균사생장 및 포자발아에 미치는 영향)

  • Lee, Sang-Yeob;Lee, Sang-Bum;Kim, Yong-Ki;Kim, Hong-Gi
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.1
    • /
    • pp.71-78
    • /
    • 2004
  • A promising hyperparasite, Ampelomyces quisqualis 94013(AQ94013) was selected as a biological control agent to cucumber powdery mildew caused by Sphaerotheca fusca. Effect of agrochemicals on mycelium growth and spore germination of AQ94013 and effect of spread stickers on hyperparasitical activity of AQ94013 to powdery mildew pathogen were evaluated. Finally it was confirmed that mycelial growth and spore germination of AQ94013 on potato dextrose agar amended with two fungicides for controlling powdery mildew, triadimefon and pyrazophos; five fungicides for controlling downy mildew, dimethomorph, kasugamycin+copper oxychloride, dichlofluanid+copper oxychloride and tribasic copper sulfate; three fungicides for controlling gray mold, iprodione, vinclozolin and procymidone; and six insecticides immidacloprid, teflubenzuron, bifenthrin, ethofenprox, deltamethrin and phenthoate were slightly reduced. Addition of mineral oil in the spore suspension of AQ94013 enhanced 7.9% control value to cucumber powdery mildew.