• Title/Summary/Keyword: Ethanol.

Search Result 9,283, Processing Time 0.035 seconds

Killer 효모 Saccharomyces cerevisiae B15-1의 에탄올 발효특성

  • Rhee, Chang-Ho;Woo, Cheol-Joo;Lee, Jong-Soo;Chung, Ki-Taek;Park, Heui-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.331-335
    • /
    • 1996
  • Characteristics of ethanol fermentation were investigated during the stationary culture of a killer yeast, Saccharomyces cerevisiae B15-1. Specific ethanol production rate reached the maximum level, 1.203 g-EtOH/g-cell-hr, at 150 g/l of the initial glucose concentration. No big differences were obtained in ethanol fermentability based on the initial sugar concentration below 150 g/l. When 200 g/l of sugar was used, fermentability dropped significantly. Although the final cell mass and the amount of ethanol produced were increased, their increase rates were declined according to the increase of initial sugar concentration. It was found that most of the sugar used below 150 g/l of concentration could be changed to ethanol. However, when 200 g/l of sugar was used, some of them remained in the media even after increase of cell mass and fermentation stopped. The ethanol yield was decreased when initial sugar concentration was high, and were increased when the amount of ethanol produced was increased and finally reached the plateau over 60 g/l of ethanol concentration.

  • PDF

Isolation of Ethanol-tolerant Strains of Yeast in Relation to Their Tolerant Mechanism (에탄올 내성 효모의 선별과 그의 에탄올 내성 기작)

  • 지계숙;박소영;이지나;이영하;민경희
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.136-142
    • /
    • 1991
  • The selection of ethanol-tolerant strains was applied to enrichment culture of YPD broth medium containing various concentrations of ethanol. Isolates were identified to be Saccharomyces cerevisiae, the others as S. dairensis, S. exiguus, S. telluris, Saccharomycodes ludwigii, Schwanniomyces occidentalis var. occidentalis and Zygosaccharomyces florentinus. Among isolates S. cerevisiae YO-1 was screened as having the highest ethanol tolerance and produced 18% (v/v) ethanol after 4 days fermentation. The change of fatty-acyl residues represents that a progressive decrease in fatty-acyl unsaturation and a proportional increase in saturation in phospholipids of yeast cells during fermentation affected the yeast viability. Supplementation ethanol to the cultures led to an increase of unsaturated fatty-acyl residues, especially $C_{16}$ or $C_{18}$ residues, along with a decrease in the proportion of saturated residues in cellular phospholipids. Increasing the amount of soy flour led to an increase in the maximum number of viable yeast cells and ethanol production. It was possible in 4 days to reach 21% (v/v) ethanol by adding 4% soy flour as source of unsaturated fatty-acyl residues to the fermentation medium. Soy flour not only increased yeast population but also enhanced the physiological properties of yeast cells to be ethanol tolerant in the anaerobic culture.

  • PDF

Effect of Ethanol on Mouse Brain Cell

  • Jang, Hyung Seok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • Ethanol has long been implicated in triggering apoptotic neurodegeneration. Alcohol also may indirectly harm the fetus by imparing the mother's physiology. We examined the effects of ethanol on immature brain of mice. Three-weeks-old female ICR strain mice daily intraperitoneally injected with ethanol at the concentration of 4 and 20% in saline for 0, 6, and 24 hours and 1 and 4 weeks. The mice were weighted and sacrificed, and the brains were ectomized for the present histological, immunohistochemical and TUNEL assays. Based on the histologic hematoxylin and eosin stain, immunohistochemical expression of glutamate receptor protein and neuronal cell adhesion molecule (NCAM) were evaluated. The cerebral cortex of the ethanol-treated group showed few typical symptoms of apoptosis such as chromosome condensation and disintegration of the cell bodies. TUNEL staining revealed DNA fragmentation in the 6 and 24 hours. This results demonstrated that acute ethanol administration causes neuronal cell death. I found that either glutamate receptor inhibition or activation could induce cerebellar degeneration as ethanol effect. Neuronal death also can be induced by excess activity of certain neurotransmitter, including glutamate. Neurons must establish cell-to-cell contact during growth and development in order to survive, migrate to their final destination, and develop appropriate connections with neighboring cell. Purkinje cell in cerebellar are especially vulnerable to the cell death and degeneration. After ethanol treatment in cerebellar, NCAM had decreased by 4 weeks. This result suggest that apoptosis seems to be involved in the slow elimination of neuron and cerebellar degeneration.

irrE, an Exogenous Gene from Deinococcus radiodurans, Improves the Growth of and Ethanol Production by a Zymomonas mobilis Strain Under Ethanol and Acid Stresses

  • Zhang, Ying;Ma, Ruiqiang;Zhao, Zhonglin;Zhou, Zhengfu;Lu, Wei;Zhang, Wei;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1156-1162
    • /
    • 2010
  • During ethanol fermentation, bacterial strains may encounter various stresses, such as ethanol and acid shock, which adversely affect cell viability and the production of ethanol. Therefore, ethanologenic strains that tolerate abiotic stresses are highly desirable. Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation, ultraviolet light, and desiccation, and therefore constitute an important pool of extreme resistance genes. The irrE gene encodes a general switch responsible for the extreme radioresistance of D. radiodurans. Here, we present evidence that IrrE, acting as a global regulator, confers high stress tolerance to a Zymomonas mobilis strain. Expression of the gene protected Z. mobilis cells against ethanol, acid, osmotic, and thermal shocks. It also markedly improved cell viability, the expression levels and enzyme activities of pyruvate decarboxylase and alcohol dehydrogenase, and the production of ethanol under both ethanol and acid stresses. These data suggest that irrE is a potentially promising gene for improving the abiotic stress tolerance of ethanologenic bacterial strains.

Candida parapsilosis에 의한 Xylitol 발효시 Arabinose가 미치는 영향

  • 오덕근;김상용
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.197-202
    • /
    • 1997
  • Effect of arabinose on xylitol production from xylose by Candida parapsilosis KFCC 10875 was investigated at the different concentrations of arabinose. When the arabinose was added in xylose medium, the cell growth increased and the final cell concentration was maximum at 10 g/l arabinose. The consumption rate of arabinose was greatly lower than those of xylose and arabinose. Above 10 g/l arabinose, it was not completely consumed and then remained in the medium during xylitol fermentation. Estimated cell mass obtained from arabinose increased with increasing consumed arabinose. As arabinose concentration was increased, xylitol production decreased but ethanol production increased. The inhibitory effect of ethanol, a major by-product, on xylitol production was also studied. As the ethanol concentration added increased, xylitol production decreased. When cells were inoculated in a xylose medium after removing ethanol, xylitol production was not inhibited. This results suggested that the inhibition of xylitol production resulted from ethanol which was formed by adding arabinose. It was also interesting that total products(xylitol and ethanol) yield was constant regardless of the arabinose concentration. This result suggested that the total amount of products such as xylitol and ethanol from xylose was constant regardless of the arabinose concentration and arabinose shifted the carbon flow from xylitol to ethanol.

  • PDF

Production of Ethanol from D-Xylose by Fusarium sp. (Fusarium sp.에 의한 D-Xylose로부터 Ethanol 생산)

  • 이상협;이왕식;방원기
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.5
    • /
    • pp.340-345
    • /
    • 1987
  • Microorganisms capable of utilizing D-xylose as a sole carbon and energy source were isolated to ferment D-xylose directly to ethanol. Among them, the strain, which showed the best ability to pro-duce ethanol, was selected and was identified as Fusarium sp. The optimal conditions for the pro-duction of ethanol were 8.0 of initial pH, 33$^{\circ}C$ of temperature, and 2% of substrate concentration. Under this optimal condition, the following results were obtained : maximum ethanol concentration, 7.0g/$\ell$; ethanol yield, 0.35g of ethanol per g of D-xylose (68.6% of theoretical); biomass yield, 0.27g of dry biomass per g of D-xylose.

  • PDF

Electrochemical and Biochemical Analysis of Ethanol Fermentation of Zymomonas mobilis KCCM11336

  • Jeon, Bo-Young;Hwang, Tae-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.666-674
    • /
    • 2009
  • An electrochemical bioreactor (ECB) composed of a cathode compartment and an air anode was used in this study to characterize the ethanol fermentation of Zymomonas mobilis. The cathode and air anode were constructed of modified graphite felt with neutral red (NR) and a modified porous carbon plate with cellulose acetate and porous ceramic membrane, respectively. The air anode operates as a catalyst to generate protons and electrons from water. The growth and ethanol production of Z. mobilis were 50% higher in the ECB than were observed under anoxic nitrogen conditions. Ethanol production by growing cells and the crude enzyme of Z. mobilis were significantly lower under aerobic conditions than under other conditions. The growing cells and crude enzyme of Z. mobilis did not catalyze ethanol production from pyruvate and acetaldehyde. The membrane fraction of crude enzyme catalyzed ethanol production from glucose, but the soluble fraction did not. NADH was oxidized to $NAD^+$in association with $H_2O_2$reduction, via the catalysis of crude enzyme. Our results suggested that NADH/$NAD^+$balance may be a critical factor for ethanol production from glucose in the metabolism of Z. mobilis, and that the metabolic activity of both growing cells and crude enzyme for ethanol fermentation may be induced in the presence of glucose.

Photoemission Study on the Adsorption of Ethanol on Chemically Modified TiO2(001) Surfaces

  • Kong, Ja-Hyun;Kim, Yu-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2531-2536
    • /
    • 2011
  • Ethanol is a prototype molecule used in probing catalytic reactivity of oxide catalysts such as $TiO_2$. In the present study, we adsorbed ethanol on $TiO_2$(001) at room temperature (RT) and the corresponding bonding state of ethanol was systematically studied by x-ray photoemission spectroscopy (XPS) using synchrotron radiation. Especially, we compared $TiO_2$(001) surfaces prepared in ultra-high vacuum (UHV) with different surface treatments such as $Ar^+$-sputtering and oxidation with molecular $O_2$, respectively. We find that the saturation coverage of ethanol at RT varies depending on the amount of reduced surface defects (e.g., $Ti^{3+}$) which are introduced by $Ar^+$-sputtering. We also find that the oxidized $TiO_2$(001) surface has other type of surface defects (not related to Ti 3d state) which can dissociate ethanol for further reaction above 600 K. Our C 1s core level spectra indicate clearly resolved features for the two chemically distinct carbon atoms from ethanol adsorbed on $TiO_2$(001), showing the adsorption of ethanol proceeds without C-C bond dissociation. No other C 1s feature for a possible oxidized intermediate was observed up to the substrate temperature of 650 K.

Comparison of Spray Characteristics according to Physical Properties of Ethanol/Gasoline Blended Fuel (에탄올/가솔린 혼합연료의 물리적 특성에 따른 분무 특성 비교)

  • Kim, Woong Il;Kim, Youngkun;Lee, Hwang Bok;Lee, Kihyung
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.109-115
    • /
    • 2017
  • The aim of this study is to investigate the effect of physical properties of fuels on spray characteristics in the gasoline direct injection system. Injection rate, spray visualization, and spray pattern experiments were performed to analyze the spray characteristics of ethanol, gasoline, and ethanol/gasoline blends. We measured injection rate of each fuel via the Bosch method. The spray visualization experiment was also carried out at atmospheric pressure using a high-speed camera. Finally, the average of drop surface area per unit volume was measured using the optical patternator. The experimental results from Bosch method showed that peak injection rate increased when the volume fraction of ethanol increased. In addition, higher viscosity of ethanol than that of gasoline leads to longer injection delay. At the initial injection region before reaching 0.8 ms, the spray tip penetration becomes longer as increasing the volume fraction of ethanol, but reversely shorter after 0.8 ms. It was found that ethanol makes spray angle become larger. The surface area per unit volume of the drop was decreased as the distance from the injection tip or the concentration of the gasoline increased.

The Effect of Estrogen Deficiency on Ethanol Metabolism in Ovariectomized Rats (난소절제 랫트에서 에스트로겐 저하가 알코올 대사에 미치는 영향)

  • Chang, Bo-Yoon;Kim, Sung-Yeon
    • YAKHAK HOEJI
    • /
    • v.54 no.6
    • /
    • pp.522-528
    • /
    • 2010
  • This study was designed to examine the effect of estrogen deficiency on the metabolism of ethanol in ovariectomized rats. Female rats were assigned to an ovariectomy (OVX) and a sham (SHAM) surgery group. Gain body weight was greater in incresed in OVX group and especially uterus weight significantly decrease depending on the concentration of estrogen after 3 month of ovariectomy. Ethanol at the tolerative dose (6 g/kg) was injected to rats by oral administration to measure the concentration of ethanol in blood. The area under the blood concentration time curve (AUC) was significantly lower in OVX group than SHAM group. The significant decrease in AUC in OVX group indicates that the estrogen deficiency leads to changes of the factors related to ethanol metabolism. Activity of hepatic alcohol dehydrogenase was not significantly influenced by the ovariectomy and also the ethanol elimination rate in vivo was not different. Cytochrome P450 isozymes did not show any changes except CYP 1A1 and 2E1. Level of hepatic glutathione in OVX group was higher after treatment of ethanol. Therefore the reduction of AUC appears not to be directly associated with the difference of ethanol metabolizing enzyme, but to be related with the physical factors like body weight.