• 제목/요약/키워드: Ethanol gas sensor

검색결과 74건 처리시간 0.029초

Sensing Properties of Ga-doped ZnO Nanowire Gas Sensor

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권2호
    • /
    • pp.78-81
    • /
    • 2015
  • Pure ZnO and ZnO nanowires doped with 3 wt.% Ga (‘3GZO’) were grown by pulsed laser deposition in a furnace system. The doping of Ga in ZnO nanowires was analyzed by observing the optical and chemical properties of the doped nanowires. The diameter and length of nanowires were under 200 nm and several ${\mu}m$, respectively. Changes of significant resistance were observed and the sensitivities of ZnO and 3GZO nanowires were compared. The sensitivities of ZnO and 3GZO nanowire sensors measured at 300℃ for 1 ppm of ethanol gas were 97% and 48%, respectively.

입자 크기에 따른 ITO 후막 센서의 가스 감지 특성 (Gas Sensing Properties of Nanocrystalline ITO Thick Films with Different Particle Sizes)

  • 신동원;이상태;전희권;이덕동;임정옥;허증수
    • 한국재료학회지
    • /
    • 제13권2호
    • /
    • pp.106-110
    • /
    • 2003
  • Nano-sized powders of Indium Tin Oxide(ITO) were synthesized by a coprecipitation method. In order to investigate the gas sensing characteristics in the nanocrystalline ITO thick films with various particle sizes, ITO powders with the average particle diameter of 15, 30, and 70 nm respectively were synthesized. And the sensitivity of ITO thick films was measured upon exposure to a target gas($C_2$$H_{5}$ /OH) and some other Volatile Organic Compounds(VOCs), such as, toluene, methanol, benzene, chloroform. As a result, ITO thick films had high sensitivity for ethanol and higher sensitivity with smaller particle size.

Facile in situ Formation of CuO/ZnO p-n Heterojunction for Improved H2S-sensing Applications

  • Shanmugasundaram, Arunkumar;Kim, Dong-Su;Hou, Tian Feng;Lee, Dong Weon
    • 센서학회지
    • /
    • 제29권3호
    • /
    • pp.156-161
    • /
    • 2020
  • In this study, hierarchical mesoporous CuO spheres, ZnO flowers, and heterojunction CuO/ZnO nanostructures were fabricated via a facile hydrothermal method. The as-prepared materials were characterized in detail using various analytical methods such as powder X-ray diffraction, micro Raman spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and transmission electron microscopy. The obtained results are consistent with each other. The H2S-sensing characteristics of the sensors fabricated based on the CuO spheres, ZnO flowers, and CuO/ZnO heterojunction were investigated at different temperatures and gas concentrations. The sensor based on ZnO flowers showed a maximum response of ~141 at 225 ℃. The sensor based on CuO spheres exhibited a maximum response of 218 at 175 ℃, whereas the sensor based on the CuO/ZnO nano-heterostructure composite showed a maximum response of 344 at 150 ℃. The detection limit (DL) of the sensor based on the CuO/ZnO heterojunction was ~120 ppb at 150 ℃. The CuO/ZnO sensor showed the maximum response to H2S compared with other interfering gases such as ethanol, methanol, and CO, indicating its high selectivity.

고분산성 Cr2O3 및 Co3O4 전이금속 나노입자 촉매가 기능화된 다공성 WO3 나노섬유를 이용한 구취진단용 화학센서 (Bio-inspired Cr2O3 and Co3O4 Nanoparticles Loaded Electrospun WO3 Nanofiber Chemical Sensor for Early Diagnosis of Halitosis)

  • 장지수;김상준;최선진;구원태;김일두
    • 센서학회지
    • /
    • 제25권3호
    • /
    • pp.223-228
    • /
    • 2016
  • In this work, we prepared porous WO3 nanofibers (NFs) functionalized by bio-inspired catalytic $Cr_2O_3$ and $Co_3O_4$ nanoparticles as highly sensitive and selective $H_2S$ gas sensing layers. Highly porous 3-dimensional (3D) NFs networks decorated by well-dispersed catalyst NPs exhibited superior $H_2S$ gas response ($R_{air}/R_{gas}$ = 46 at 5 ppm) in high humidity environment (95 %RH). In particular, the sensors showed outstanding $H_2S$ selectivity against other interfering analytes (such as acetone, toluene, CO, $H_2$, ethanol). Exhaled breath sensors using $Cr_2O_3$ and $Co_3O_4$ catalysts-loaded $WO_3$ NFs are highly promising for the accurate detection of halitosis.

Electrical Properties of Alcohol Vapor Sensors Based on Porous Silicon

  • Park, Kwang-Youl;Kang, Kyung-Suk;Kim, Seong-Jeen;Lee, Sang-Hoon;Park, Bok-Gil;Sung, Man-Young
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1232-1236
    • /
    • 2003
  • In this work, we fabricated a gas-sensing device based on porous silicon(PS), and its C-V properties were investigated for sensing alcohol vapor. The structure of the sensor consists of thin Au/oxidized PS/PS/P-Si/Al, where the p-Si is etched anisotropically to be prepared into a membrane-shape. We used alcohol gases vaporized from different alcohol (or ethanol) solutions mixed with pure water at 36$^{\circ}C$, similarly with an alcohol breath measurement to check drunk driving. As the result, I-V curves showed typical tunneling property, and C-V curves were shaped like those of a MIS (metal-insulator-semiconductor) capacitor, where the capacitance in accumulation was increased with alcohol vapor concentration.

Comparison of Optical Properties of Ga-doped and Ag-doped ZnO Nanowire Measured at Low Temperature

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권5호
    • /
    • pp.262-264
    • /
    • 2014
  • Pristine ZnO, 3 wt.% Ga-doped (3GZO) and 3 wt.% Ag-doped (3SZO) ZnO nanowires (NWs) were grown using the hot-walled pulse laser deposition (HW-PLD) technique. The doping of Ga and Ag in ZnO NWs was observed by analyzing the optical and chemical properties. We optimized the synthesis conditions, including processing temperature, time, gas flow, and distance between target and substrate for the growth of pristine and doped ZnO NWs. The diameter and length of pristine and doped ZnO NWs were controlled under 200 nm and several ${\mu}m$, respectively. Low temperature photoluminescence (PL) was performed to observe the optical property of doped NWs. We clearly observed the shift of the near band edge (NBE) emission by using low temperature PL. In the case of 3GZO and 3SZO NWs, the center photon energy of the NBE emissions shifted to low energy direction using the Burstein Moss effect. A strong donor-bound exciton peak was found in 3 GZO NWs, while an acceptor-bound exciton peak was found in 3SZO NWs. X-ray photoelectron spectroscopy (XPS) also indicated that the shift of binding energy was mainly attributed to the interaction between the metal ion and ZnO NWs.

가스 센서 응용을 위한 압전 마이크로 칸티레버의 제작 및 특성 (Fabrication and Properties of Piezoelectric Microcantilever for Gas Sensor Application)

  • 신상훈;송상근;백준규;박효덕;이재찬
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.75-75
    • /
    • 2003
  • 본 연구에서는 대기 중 극 미량으로 존재하는 환경 유해 가스 성분을 검출할 수 있는 미세 소자로의 응용을 위해 마이크로 칸티레버를 제작하고 가스 센서로의 활용 가능성을 검토하였다. 마이크로 칸티레버는 크게 구동층 캐패시터로서 대표적인 압전 재료인 Pb(Zr,Ti)O$_3$ (PZT)를 사용하고 SiNx 박막을 지지층으로 하는 형태로 제작되었다. 제작된 마이크로 칸티레버는 치수 및 형상에 따라 17~29 KHz 의 기본 공진 주파수 값을 나타내었다. Electron beam evaporator를 이용한 copper (Cu) 박막의 단계적인 증착을 통해 칸티 레버 표면에 질량을 증가시키고 그에 따른 마이크로 칸티레버의 공진주파수 변화를 관찰한 결과 질량 증가에 대해 34 Hz/ng의 선형적인 주파수 감소를 나타내었으며, 이로부터 694.4 $\textrm{cm}^2$/g 의 gravimetric sensitivity factor를 얼을 수 있었다. 마이크로칸티레버의 가스 감지능력 시험을 위해 가스 흡착층으로 일차 알콜류의 vapor를 흡착 하는 것으로 보고된 poly methyl metacrytate (PMMA)를 마이크로 칸티레버 표면에 코팅하였다. 마이크로칸티 레버의 기본 공진 주파수 및 PMMA 흡착층 형성과 가스의 흡착에 따른 주파수 변화는 마이크로 칸티 레버로부터 의 전기적 신호를 이용하는 복소 임피던스 분석에 의해 측정되었다. PMMA가 코팅된 마이크로 칸티레버는 ethanol 및 methanol vapor 의 농도가 증가함에 따라 선형적인 공진주파수 감소를 나타내었으며, methanol vapor 의 경우 0.06 Hz/ppm 의 가스 검출 감도를 얻을 수 있었다.

  • PDF

Hydrogen and Ethanol Gas Sensing Properties of Mesoporous P-Type CuO

  • Choi, Yun-Hyuk;Han, Hyun-Soo;Shin, Sun;Shin, Seong-Sik;Hong, Kug-Sun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.222-222
    • /
    • 2012
  • Metal oxide gas sensors based on semiconductor type have attracted a great deal of attention due to their low cost, flexible production and simple usability. However, most works have been focused on n-type oxides, while the characteristics of p-type oxide gas sensors have been barely studied. An investigation on p-type oxides is very important in that the use of them makes possible the novel sensors such as p-n diode and tandem devices. Monoclinic cupric oxide (CuO) is p-type semiconductor with narrow band gap (~1.2 eV). This is composed of abundant, nontoxic elements on earth, and thus low-cost, environment-friendly devices can be realized. However, gas sensing properties of neat CuO were rarely explored and the mechanism still remains unclear. In this work, the neat CuO layers with highly ordered mesoporous structures were prepared by a template-free, one-pot solution-based method using novel ink solutions, formulated with copper formate tetrahydrate, hexylamine and ethyl cellulose. The shear viscosity of the formulated solutions was 5.79 Pa s at a shear rate of 1 s-1. The solutions were coated on SiO2/Si substrates by spin-coating (ink) and calcined for 1 h at the temperature of $200{\sim}600^{\circ}C$ in air. The surface and cross-sectional morphologies of the formed CuO layers were observed by a focused ion beam scanning electron microscopy (FIB-SEM) and porosity was determined by image analysis using simple computer-programming. XRD analysis showed phase evolutions of the layers, depending on the calcination temperature, and thermal decompositions of the neat precursor and the formulated ink were investigated by TGA and DSC. As a result, the formation of the porous structures was attributed to the vaporization of ethyl cellulose contained in the solutions. Mesoporous CuO, formed with the ink solution, consisted of grains and pores with nano-meter size. All of them were strongly dependent on calcination temperature. Sensing properties toward H2 and C2H5OH gases were examined as a function of operating temperature. High and fast responses toward H2 and C2H5OH gases were discussed in terms of crystallinity, nonstoichiometry and morphological factors such as porosity, grain size and surface-to-volume ratio. To our knowledge, the responses toward H2 and C2H5OH gases of these CuO gas sensors are comparable to previously reported values.

  • PDF

Heterogeneous Porous WO3@SnO2 Nanofibers as Gas Sensing Layers for Chemiresistive Sensory Devices

  • Bulemo, Peresi Majura;Lee, Jiyoung;Kim, Il-Doo
    • 센서학회지
    • /
    • 제27권5호
    • /
    • pp.345-351
    • /
    • 2018
  • We employed an unprecedented technique to synthesize porous $WO_3@SnO_2$ nanofibers exhibiting core-shell and fiber-in-tube configurations. Firstly, 2-methylimidazole was uniformly incorporated in as-spun nanofibers containing ammonium metatungstate hydrate and the sacrificial polymer (polyacrylonitrile). Secondly, the 2-methylimidazole on the surfaces of nanofibers was complexed with tin(II) chloride ($SnCl_2$) via simple impregnation of the as-spun nanofibers in ethanol containing tin(II) chloride dihydrate ($SnCl_2{\cdot}2H_2O$). The presence of vacant p-orbitals in tin (Sn) and the nucleophilic nitrogen on the imidazole ring allowed for the reaction between $SnCl_2$ and 2-methylimidazole, forming adducts on the surfaces of the as-spun nanofibers. The calcination of these nanofibers resulted in porous $WO_3@SnO_2$ nanofibers with a higher surface area ($55.3m^2{\cdot}g^{-1}$) and a better response to 1-5 ppm of acetone than pristine $SnO_2$ NFs synthesized using a similar method. An improved response to acetone was achieved upon functionalization of the $WO_3@SnO_2$ nanofibers with catalytic palladium nanoparticles. This work demonstrates the potential application of $WO_3@SnO_2$ nanofibers as sensing layers for chemiresistive sensory devices for the detection of acetone in exhaled breath.

졸-겔법을 이용한 $In_2O_3$ 박막의 오존 센서 ($In_2O_3$ Thin Film Ozone Sensor Prepared by Sol-Gel Method)

  • 이윤수;송갑득;최낙진;주병수;강봉휘;이덕동
    • 센서학회지
    • /
    • 제10권2호
    • /
    • pp.101-107
    • /
    • 2001
  • 오존가스에 대해 고감도, 고선택성 및 신뢰성을 가지는 $In_2O_3$ 박막을 졸-겔법을 이용하여 제작하였다. 제작된 박막은 기존의 제작방법에 비해 낮은 동작온도를 가지므로 에너지 소모를 줄일 수 있다. 최근 경제적이며 에너지를 절감할 수 있고 박막 구조에 대한 제어가 정확한 졸-겔법을 이용한 박막의 증착이 관심을 끌고 있다. Indium alkoxide precursor는 indium hydroxide와 부탄올을 합성하여 제조하였으며, 인디움 졸 용액을 스핀코팅법을 사용하여 증착하였다. 박막의 점착성을 향상시키기 위하여 PVA를 바인더로 사용하였다. $In_2O_3$ 졸을 스핀코팅 후 $600^{\circ}C$에서 1시간 열처리하는 방법을 $1{\sim}5$회 반복하여 박막을 형성하였다. 박막의 두께는 코팅횟수로 조절하였다. 표면 및 두께 분석과 박막의 결정성을 SEM과 XRD을 이용해 조사하였다. 제작된 $In_2O_3$ 박막은 동작온도 $250^{\circ}$에서 오존에 대해 높은 감도를 보였고, 메탄, 일산화탄소, 부탄 및 에탄올에 대해 좋은 선택성을 보였다.

  • PDF