• 제목/요약/키워드: Ethanol gas sensor

검색결과 74건 처리시간 0.025초

Properties of Non-dispersive infrared Ethanol Gas Sensors according to the Irradiation Energy

  • Kim, JinHo;Yi, SeungHwan
    • 센서학회지
    • /
    • 제26권3호
    • /
    • pp.168-172
    • /
    • 2017
  • A nondispersive infrared (NDIR) ethanol gas sensor was prototyped with ASIC implemented thermopile sensor, which included a temperature sensor and two ellipsoidal waveguide structures. The temperature dependency of the two ethanol sensors (with partially blocked and intact structures) has been characterized. The two ethanol gas sensors showed linear output voltages initially when varying the ambient temperature from 253 K to 333 K. The slope of the temperature sensor presented a constant value of 15 mV/K. After temperature compensation, the ethanol gas sensor estimated ethanol concentrations with larger errors of 20 to 25% below 200 ppm. However, the estimation errors were reduced to between -10 and +1 % from 253 K to 333 K above 200 ppm ethanol gas concentration in this research.

다중벽 카본 나노 튜브를 이용한 가스센서의 제작 (The Fabrication of Gas Sensors using MWCNTs)

  • 장경욱;김명호
    • 한국전기전자재료학회논문지
    • /
    • 제22권12호
    • /
    • pp.1089-1094
    • /
    • 2009
  • Carbon nanotubes (CNTs) have excellent electrical, chemical stability, mechanical and thermal properties. In this paper, networks of Multi-walled carbon nanotube (MWCNT) materials were investigated as resistive gas sensors for ethanol ($C_2H_5OH$) detection. Sensor films were fabricated by air spray method for the multi-walled CNTs solution on glass substrates. Sensors were characterized by resistance measurements in the sensing system, in order to find the optimum detection properties for the ethanol gas molecular. The film that was sprayed with the MWCNT dispersion for 60 see, was 300 nm thick. And the electric resistivity is $2{\times}10^{-2}\;{\Omega\cdot}cm$. Also, the sensitivity and the linearity of MWVNT sensor for ethanol gas are 0.389 %/sec and 17.541 %/FS, respectively. The MWCNT film was excellent in the response for the ethanol gas molecules and its reaction speed was very fast, which could be using as ethanol gas sensor. The conductance of the fabricated sensors decreases when the sensors are exposed to ethanol gas.

In2O3 에탄올 가스 센서의 가스 감응 특성에 미치는 첨가물 효과 (Effects of Additives on Gas Sensing Properties of In2O3 Ethanol Gas Sensor)

  • 최동한
    • 센서학회지
    • /
    • 제23권3호
    • /
    • pp.192-196
    • /
    • 2014
  • The effects of additives on gas sensing properties of $In_2O_3$ ethanol gas sensor were investigated. Gas sensors were fabricated by the painting method. The $In_2O_3-La_2O_3-Pt$ sensor heat treated $400^{\circ}C$ displayed fast response and recovery behavior with a maximum sensitivity to ethanol gas in air at an operating temperature of $300^{\circ}C$.

입사광량의 조절과 이에 따른 비분산 적외선 알코올 센서의 온도 특성과 보정 (Temperature Compensation and Characteristics of Non-dispersive Infrared Alcohol Sensor According to the Intensity of Light)

  • 김진호;조희찬;이승환
    • 센서학회지
    • /
    • 제27권1호
    • /
    • pp.47-54
    • /
    • 2018
  • In this paper, we describe the thermal characteristics of the output voltages of ethanol gas sensor according to the amount of radiation incident on the infrared sensors located at each focal point of two elliptical waveguides. In order to verify the output characteristics of the gas sensor according to the amount of incident light on the infrared sensor, two combinations of sensor modules were fabricated. Hydrophobic thin film is deposited on one of the reflectors of sensor modules and one of the two infrared sensors was equipped with a hollow disk (10 Ø), and the temperature characteristics of the infrared sensor equipped with the hollow disk (10 Ø) and the infrared sensor without the disk were tested. The temperature was varied from 253 K to 333 K at 10 K intervals based on 298 K. The properties of ethanol gas sensor have been identified with respect to varying temperature for a range of ethanol concentration from 0 ppm to 500 ppm. In the case of an infrared sensor equipped with a hollow disk (10 Ø), the output voltage of the sensor decreased by 0.8 mV and 1 mV, respectively, as the temperature increased. Conversely, the output voltage of the diskless infrared sensor showed an average increase of 67 mV and 57 mV as the temperature increased. The ethanol concentrations estimated on the basis of results show an error of more than 10 % for less than 100 ppm concentration. However, if the ethanol concentration exceeds 100 ppm, the gas concentration can be estimated within the range of ${\pm}10%$.

후막형 에탄올 가스 감지소자의 제조 및 특성 (Fabrication and ethanol gas sensing characteristics of the thick film ethanol gas sensors)

  • 최동한
    • 센서학회지
    • /
    • 제16권6호
    • /
    • pp.428-433
    • /
    • 2007
  • $SnO_{2}$-based thick film ethanol gas sensors were fabricated on alumina substrates and their ethanol gas sensing characteristics were investigated. The film sintered at $400^{\circ}C$ for 2 hrs. showed the highest sensitivity to ethanol gas and the sensitivity of the film to 1000 ppm ethanol gas in air was 97 % at an operating temperature of $250^{\circ}C$. The addition of $Fe_{2}O_{3}$ to $SnO_{2}$ enhanced the sensitivity by changing the type and number of surface acidic/basic sites.

ZnO를 기반으로한 에탄올 가스 센서 (ZnO-based Ethanol Gas Sensor)

  • 최동한
    • 센서학회지
    • /
    • 제22권6호
    • /
    • pp.444-449
    • /
    • 2013
  • ZnO-based ethanol gas sensors were fabricated by the painting method and their electrical and ethanol gas sensing characteristics were investigated. The ZnO-Pt (1 wt.%) film heat treated at $400^{\circ}C$, for 2 hrs. in air showed the highest sensitivity to ethanol gas in air at an operating temperature of $250^{\circ}C$ The sensitivity of the gas sensors to 1000 ppm ethanol in air at $250^{\circ}C$ was 8.7 and rising time and falling time of the gas sensors were 3.12 minutes and 25 minutes, respectively.

막가스센서에 의한 에탄올 농도의 온라인 측정 (An On-Line Measurement of Ethanol Concentration by Membrane Gas Sensor)

  • 김형찬;박민선
    • KSBB Journal
    • /
    • 제10권2호
    • /
    • pp.126-130
    • /
    • 1995
  • 초산발효 중 에탄올 농도를 On-line으로 측정하기 위해 막가스 센서를 개발하였다. 에탄올이 함유된 발효액은 실리콘막을 통해 투과되고 Carrier gas로 사용된 Synthetic air에 의해 운반되어 반도체형 가 스센서에 감지되도록 설계하였다. 이 때 실리콘막의 두께가 O.5mm이고 Carrier gas의 유속이 20ml/mim이었을 때 막가스 센서의 감도가 가장 높았다. 막가스센셔의 저항치는 측정하고자 하는 에탄올 농 도에 따라 변하였고 이 저항치는 전위차로 변환되어 출력되었다. 제작된 막가스센서의 Calibration CUf ve를 작성하였고 실제로 조업 중인 초산 발효조의 발효액 중 에단올 농도의 On-line 측정이 가능하였 으며 이를 Gas chromatography에 의한 분석치와 비교한 결과 에단올 농도가 $0∼70g/\ell$의 범위에서 서로 상관관계를 나타내어 이러한 막가스센서가 초산발효와 같은 여러 생물공정의 모니터링과 제어에 이용이 가능함을 확인하였다.

  • PDF

다공질규소를 이용한 MOPS 구조의 에탄올 감지 특성 (The sensing characteristics of MOPS structure based on porous silicon for ethanol gas)

  • 손신영;김한중;이기원;김영유
    • 센서학회지
    • /
    • 제15권6호
    • /
    • pp.457-461
    • /
    • 2006
  • To use the porous silicon as gas sensors, we made the MOPS structure from the porous silicon with Al evaporation and investigated the sensing characteristic of ethanol. When the MOPS structure is in contact with ethanol gas, the maximum peak of PL changes and it return to original intensity without contact. The MOPS structure had response time 0.78s and recovery time 4.13s when it is in contact with ethanol, which satisfied the required sensor standards. Further complimentary researches, however, are required to investigate the contact mechanism between MOPS structure and ethanol and to solve the surface contamination problem.

고감도 에탄올 가스 센서 (High sensitivity ethanol gas sensors)

  • 최동한
    • 센서학회지
    • /
    • 제16권5호
    • /
    • pp.355-360
    • /
    • 2007
  • Highly sensitive thick film ethanol gas sensors based on a nanocrystalline $In_{2}O_{3}$ were fabricated by painting method on alumina substrates. The crystal structure of the $In_{2}O_{3}$ powder was characterised by XRD analysis. The microstructure of the films were characterised using FE-SEM. The experimental results of the ethanol gas sensing characteristics indicated that the undoped $In_{2}O_{3}$ thick film has a high sensitivity. The sensitivity of the film heat treated at $400^{\circ}C$ for 2 hrs. was as high as 32.73 at an operating temperature of $200^{\circ}C$ to 1000 ppm ethanol gas in air.

Highly Sensitive and Fast-Responding Ethanol Sensor using Au Doped-In2O3 Hollow Spheres

  • Seong-Young Jeong
    • 센서학회지
    • /
    • 제33권5호
    • /
    • pp.242-247
    • /
    • 2024
  • Pure and 0.3 wt% Au-doped In2O3 hollow spheres were synthesized via ultrasonic spray pyrolysis of droplets containing an In-source and sucrose in air and their gas sensing characteristics to 1 ppm ethanol, 1 ppm toluene, 1 ppm xylene, 2 ppm nitrogen dioxide (NO2), and 30 ppm carbon monoxide (CO) were measured at 400 - 450℃. The pure In2O3 hollow spheres exhibited relatively low gas responses and sluggish recovery kinetics. In contrast, the doping of Au into In2O3 hollow spheres significantly increased the gas response (S= resistance ratio) to 1 ppm ethanol (S= 20.6) at 400℃ with low cross-responses (S = 1.3-8.8) to other interference gases. Furthermore, the hollow spherical morphology of In2O3 provides a large surface area and facilitates rapid gas diffusion, resulting in fast response and recovery times. The sensor exhibited excellent performance with a low detection limit of 1.6 ppb. These findings indicate that the Au-In2O3 hollow spheres are promising candidates for advanced ethanol-sensing applications, particularly in breath-alcohol monitoring for ignition interlock devices.