• Title/Summary/Keyword: Ethanol Production

Search Result 1,594, Processing Time 0.03 seconds

Isolation of Ethanol-tolerant Strains of Yeast in Relation to Their Tolerant Mechanism (에탄올 내성 효모의 선별과 그의 에탄올 내성 기작)

  • 지계숙;박소영;이지나;이영하;민경희
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.136-142
    • /
    • 1991
  • The selection of ethanol-tolerant strains was applied to enrichment culture of YPD broth medium containing various concentrations of ethanol. Isolates were identified to be Saccharomyces cerevisiae, the others as S. dairensis, S. exiguus, S. telluris, Saccharomycodes ludwigii, Schwanniomyces occidentalis var. occidentalis and Zygosaccharomyces florentinus. Among isolates S. cerevisiae YO-1 was screened as having the highest ethanol tolerance and produced 18% (v/v) ethanol after 4 days fermentation. The change of fatty-acyl residues represents that a progressive decrease in fatty-acyl unsaturation and a proportional increase in saturation in phospholipids of yeast cells during fermentation affected the yeast viability. Supplementation ethanol to the cultures led to an increase of unsaturated fatty-acyl residues, especially $C_{16}$ or $C_{18}$ residues, along with a decrease in the proportion of saturated residues in cellular phospholipids. Increasing the amount of soy flour led to an increase in the maximum number of viable yeast cells and ethanol production. It was possible in 4 days to reach 21% (v/v) ethanol by adding 4% soy flour as source of unsaturated fatty-acyl residues to the fermentation medium. Soy flour not only increased yeast population but also enhanced the physiological properties of yeast cells to be ethanol tolerant in the anaerobic culture.

  • PDF

Continuous Ethanol Fermentation by Immobilized Kluyveromyces marxianus F043 Using Jerusalem Arichoke Powder (돼지감자 분말을 이용한 고정화 Kluyveromyces marxianus sp.의 에탄올 연속발효)

  • 신지현;최언호
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.346-351
    • /
    • 1995
  • To produce ethanol from Jerusalem artichoke powder efficiently, Kluyveromyces marxianus F043 cells were encapsulated in 2% sodium alginate and were cultured in a countinuous reactor to investigate the fermentation properties. Immobilized K. marxianus F043 cells were activated for 48 hours in a fermentor for continuous ethanol production. The culture in a CSTR using a Jerusalem artichoke substrate treated with 2% cellulase showed a decrease in ethanol concentration and an increase in residual saccharide concentration with a increasing dilution rate. Optimum conditions for high ethanol productivity and low residual saccharide output were clarified to be given at a dilution rate of 0.2 h$^{-1}$ and a Jerusalem artichoke medium concentration of 75 g/l. Ethanol productivity of 3.1 g/l-h and saccharide utilization of 62.6% were obtained under the optimum condition. When the fermentation was performed for 3 weeks under these conditions, the effluent medium showed stable ethanol concentrations of 16.3 - 17.9 g/l and viable cells of 6.60-7.16 log cells/ml without contamination. Trace amounts of methyl, n-propyl, iso-butyl, isoamyl alcohols besides ethanol were detected.

  • PDF

Comparative Study on Ethanol Production with Pentose and/or Hexose by Saccharomyces cerevisiae and/or Pichia stipitis (Saccharomyces cerevisiae와 Pichia stipitis를 이용한 오탄당과 육탄당으로부터 에탄올 생산에 관한 비교연구)

  • Kim, Jung-Gon;Ahn, Jung-Hoon
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.335-340
    • /
    • 2011
  • Glucose and xylose are the most abundant materials in nature which can be used to produce ethanol by yeast fermentation. Three combinations of cultivation with glucose and xylose were carried out; separated, co-culture, and sequential fermentation with Saccharomyces cerevisiae and Pichia stipitis. In the separated fermentation, S. cerevisiae fermented glucose to produce 14.5 g/l ethanol from 29.4 g/l glucose but hardly used xylose. However, P. stipitis utilized not only glucose but also xylose to produce ethanol 11.9 g/l and 11.6 g/l from 29.4 g/l glucose and 29.0 g/l xylose, respectively. In the mixture of glucose and xylose, P. stipitis fermented both sugars, producing 21.1 g/l ethanol while S. cerevisiae fermented only glucose, producing 13.4 g/l ethanol. In the co-culture and sequential fermentation, the co-culture showed more efficient ethanol productivity with 18.6 g/l ethanol than the sequential fermentation with 12.4 g/l ethanol. To investigate the effect of nutrients in the growth of microorganisms and ethanol production, yeast nitrogen base (YNB) was used in the sequential fermentation with S. cerevisiae and P. stipitis. YNB supplemented some nutrients which S. cerevisiae used up in the broth and the culture showed increased growth rate, increased consumption of xylose, and increased ethanol productivity producing 22.5 g/l ethanol from 54.6 g/l sugar with a yield of 0.41 g/g.

Performance of Cone Type Tower Fermentor for Ethanol Production (탑형발효기에 의한 에탄올 생산)

  • 서근학;송승구
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 1992
  • A cone type of tower fermentor loaded with flocculating Sacchromyces uvarum was used to study the fermentor performance. The performance of cone type fermentor was compared with those of other fermentors. The maximum yeast concentration in the cone type of tower fermentor was 35.9-43.0g/1.hr and the maximum ethanol productivity was 14.75g/1.hr at the dilution rate 0.26 $hr^{-1}$. The ethanol yield was 0.446-0.472g ETOH/g Glucose. It was concluded that a cone type of tower fermentor might offer better perspectives for continous etanol fermentation.

  • PDF

Metabolic Engineering of the Thermophilic Bacteria, Bacillus stearothermophilus, for Ethanol Production

  • Jo, Gwang-Myeong;Ingram, Lonnie O.
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.56-59
    • /
    • 2000
  • Thermophilic bacterium, Bacillus stearothermophilus NUB3621, was engineered to produce ethanol from glucose by introducing cloned thermostable pyruvate decarboxylase and alcohol dehydrogenase genes. A novel promoter sequence was screened and used for the enhancement of these two enzymes. Successful redirection of metabolic flux into ethanol was obtained. In addition, gene expression profiling using Bacillus subtilis DNA microarray was analyzed to overcome the intrinsic low glucose utilization of B.stearothermophilus. Many known and unknown genes were identified to be up or down regulated under glucose-containing media.

  • PDF

Candida tropicalis Isolated from Tuak, a North Sumatera- Indonesian Traditional Beverage, for Bioethanol Production

  • Hermansyah, Hermansyah;Novia, Novia;Minetaka, Sugiyama;Satoshi, Harashima
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • Tuak is a traditional alcoholic beverage, one of the most widely known in the North Sumateran region of Indonesia. It is produced by a spontaneous fermentation process through the application of one or more several kinds of wood bark or root, called raru (Xylocorpus wood bark or a variety of forest mangosteen), into the sap water of sugar palm (Arenga pinnata) for 2−3 days. In this research, yeast that are potentially useful for ethanol production was isolated from Tuak and identified. Based on analysis of D1/D2 domain sequence of LSU (large subunit) rRNA genes, those isolated yeast strains, HT4, HT5, and HT10 were identified as Candida tropicalis. Fermentation test of these C. tropicalis isolates displayed an ability to produce 6.55% (v/v) and 4.58% ethanol at 30℃ and 42℃, respectively. These results indicated C. tropicalis isolates more rapidly utilize glucose and obtain higher levels of the production of ethanol at the higher temperature of 42℃ than S. cerevisiae, a common yeast used for bioethanol fermentation.

Recent advances in tissue culture and genetic transformation system of switchgrass as biomass crop (바이오에너지 개발용 스위치그라스의 조직배양 및 형질전환 최근 연구동향)

  • Lee, Sang Il;Lim, Sung-Soo;Roh, Hee Sun;Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.185-191
    • /
    • 2013
  • Over the past decades, carbon dioxide concentration of the atmosphere of the world has increased significantly, and thereby the greenhouse effect has become a social issue. To solve this problem, new renewable energy sources including solar, hydrogen, geothermal, wind and bio-energy are suggested as alternatives. Among these new energy sources, bio-energy crops are widely introduced and under rapid progress. For example, corn and oilseed rape plants are used for the production of bio-ethanol and bio-diesel, respectively. However, grain prices has increased severely because of the use of corn for bio-ethanol production. Therefore, non-edible switchgrass draws attention as an alternative source for bio-ethanol production in USA. This review describes the shortage of fossil energy and an importance of switchgrass as a bio-energy crop. Also, some characteristics of its major cultivars are introduced including growth habit, total output of biomass yields. Furthermore, biotechnological approaches have been conducted to improve the productivity of switchgrass using tissue culture and genetic transformation.

Antioxidant and Suppressive Effects of Ethanolic Extract Fractions from Safflower (Carthamus tinctorius L.) Flower on the Biosynthesis of Inflammatory Mediators from LPS-stimulated RAW 264.7 Cells

  • Lee, Je-Hyuk;Jeon, Choon-Sik;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.143-149
    • /
    • 2009
  • The aim of this study was to elucidate the anti-inflammatory activity of safflower (Carthamus tinctorius L.) ethanolic extract fractions (CFEFs). Butanol fraction had the strongest antioxidant activity, and all CFEFs, except for chloroform fraction, partly inhibited lipopolysaccharide (LPS)-induced nitrite production in RAW 264.7 cells. In the cell-free system, hexane and butanol fractions chemically quenched nitric oxide (NO). In addition, the iNOS mRNA transcription was suppressed by ethanol extract and hexane fraction in LPS-stimulated RAW 264.7 cells. Taken together, the inhibitory effect of CFEFs on NO production from LPS-stimulated RAW 264.7 cells, might be due to both the chemical NO quenching activity and the suppression of iNOS mRNA transcription partially. The synthesis of prostaglandin $E_2$ ($PGE_2$) was potently inhibited by ethanol extract to below basal label, and the transcription of cyclooxygenase-2 (COX-2), an enzyme involving in $PGE_2$ synthesis, was partially suppressed by ethanol extract and hexane fraction. Based on these results, CFEFs may be useful as an alternative medicine for the relief and retardation of immunological inflammatory responses through the reduction of inflammatory mediators, including NO and $PGE_2$ production.

Biomass Production of Saccharomyces cerevisiae KFCC 10823 and Its Use in Preparation of Doenjang

  • Yoo, Jin-Young;Kim, Hyeon-Gyu;Kwon, Dong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 1997
  • An ethanolic fermentation process was developed for preparing Doenjang with high ethanol. Higher and efficient viable cell production of salt-tolerant ethanolic yeast is a prerequisite for the successful commercial-scale process of ethanol production during Doenjang fermentation. Culture conditions of salt-tolerant yeast, S. cerevisiae KFCC 10823, was studied in terms of the effect of several environmental and nutritional factors. Viable cell numbers were the highest in a medium containing the following components per liter of water: soysauce, 300ml; dextrose, 50 g; beef extract, 5 g; yeast extract, 5 g; $KH_2PO_4$, 5 g; NaCl, 50 g. The optimal culture conditions of S. cerevisiae KFCC 10823 were pH 5.5, $25^{\circ}C$, 200 rpm and 0.5 vvm. Yeast viability during batch fermentation was gradually decreased to a level less than $90{\%}$ after 35 hours. The maximum cell number was $2.2{\times}10_7$ cells/ml at the optimal condition. Doenjang prepared with ethanolic yeast was ripened after 45 days at $30^{\circ}C$. This Doenjang contains 470 mg% of amino nitrogen and 2.5% ethanol. The shelf-life at $30^{\circ}C$ was theoretically estimated as 444 days.

  • PDF

Thermoanaerobic bacterial fermentation for production of ethanol and enzymes

  • 현형환
    • The Microorganisms and Industry
    • /
    • v.12 no.1
    • /
    • pp.15-22
    • /
    • 1986
  • Chemical production by anaerobic bacterial fermentations was an important microbiological topic in the past due to both fundamental and applied aspects related to acetone-butanol production prior to its replacement by chemical synthetic routes from petroleum. Presently, the depletion and price-escalation of petroleum has regenerated a great interest in the potential of anaerobic bacteria to transform the renewable resouces such as biomass and wastes into chemical feed-stocks and fuels.

  • PDF