• Title/Summary/Keyword: Etch modeling

Search Result 34, Processing Time 0.02 seconds

Modeling of plasma etch process using genetic algorithm and radial basis function network (유전자 알고리즘과 레이디얼 베이시스 함수망을 이용한 플라즈마 식각공정 모델링)

  • Park, Kyoung-Young;Kim, Byung-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.159-162
    • /
    • 2004
  • 플라즈마 공정 모델 개발에 역전파 신경망이 가장 많이 응용되고 있으나, 관여하는 다수의 학습인자로 인해 그 최적화가 매우 어렵다. Radial basis function network (RBFN)은 관여하는 학습인자의 수가 적어 그 최적화가 상대적으로 용이하지만, 두인자의 다양한 조합에 의해 RBFN의 예측성능이 상당히 영향을 받을 수 있다. 본 연구에서는 학습인자 상호간의 작용을 유전자 알고리즘 (genetic algorithm-GA)을 이용하여 최적화하는 기법을 소개한다. 제안하는 알고리즘을 광도파로 제작을 위해 수행한 실리카 식각공정 데이터에 적용하여 평가하였다. 평가에 이용된 식각 응답은, 실리카 식각률, aluminum (Al) 식각률, Al 선택비, 그리고 실리카 프로파일 각도이다. 최적화한 모델은 종래의 모델과 비교하였으며, 그 향상도는 실리카 식각률, Al 식각률, Al 선택비, 그리고 실리카 프로파일 각도에 대해서 각 기 0.8%, 32.4%, 20.3%, 1.3% 등이었다. Al 식각률과 선택비에 대해서 예측성능은 상당이 향상되었다.

  • PDF

Modeling of plasma etch process using genetic algorithm optimization of neural network initial weights (유전자 알고리즘-응용 역전파 신경망 웨이트 최적화 기법을 이용한 플라즈마 식각 공정 모델링)

  • Bae, Jung-Gi;Kim, Byung-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.272-275
    • /
    • 2004
  • 플라즈마 식각공정은 소자제조를 위한 미세 패턴닝 제작에 이용되고 있다. 공정 메커니즘의 정성적 해석, 최적화, 그리고 제어를 위해서는 컴퓨터 예측모델의 개발이 요구된다. 역전파 신경망 (backpropagation neural network-BPNN) 모델을 개발하는 데에는 다수의 학습인자가 관여하고 있으며, 가장 그 최적화가 어려운 학습인자는 초기웨이트이다. 모델개발시, 초기웨이트는 random 값으로 설정이 되며, 이로 인해 초기웨이트의 최적화가 어렵다. 본 연구에서는 유전자 알고리즘 (genetic algorithm-GA)을 이용하여 BPNN의 초기웨이트를 최적화하였으며, 이를 식각공정 모델링에 적용하여 평가하였다. 실리카 식각공정 데이터는 $2^3$ 인자 실험계획법을 이용하여 수집하였으며, GA에 관여하는 두 확률인자의 영향을 42 인자 실험계획법을 이용하여 최적화 하였다. 종래의 모델에 비해, 최적화된 모델은 실리카 식각률, Al 식각률, Al 선택비, 그리고 프로파일 응답에 대해서 각 기 24%, 13%,, 16%, 그리고 17%의 향상률을 보였다. 이는 제안된 최적화 기법이 플라즈마 모델의 예측성능을 증진하는데 효과적으로 응용될 수 있음을 의미한다.

  • PDF

Modeling of plamsa etch process using a radial basis function network (레이디얼 베이시스 함수망을 이용한 플라즈마 식각공정 모델링)

  • Park, Kyoung-Young;Kim, Byung-Whan;Lee, Byung-Teak
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1129-1133
    • /
    • 2004
  • 반도체공정 최적화에 소요되는 시간과 경비를 줄이기 위해 신경망 모델이 개발되고 있다. 주로 역전파 신경망을 이용하여 모델이 개발되고 있으며, 본 연구에서는 Radial Basis Function Network (RBFN)을 이용하여 플라즈마 식각공정 모델을 개발한다. 실험데이터는 유도결합형 플라즈마를 이용한 Silicon Carbide 박막의 식각공정으로부터 수집되었다. 모델개발을 위해 $2^4$ 전인자 (full factorial) 실험계획법이 적용되었으며, 모델에 이용된 식각응답은 식각률과 atomic force microscopy로 측정한 식각표면 거칠기이다. 모델검증을 위해 추가적으로 16번의 실험을 수행하였다. RBFN의 예측성능은 세 학습인자, 즉 뉴런수, width, 초기 웨이트 분포 (initial weight distribution-IWD) 크기에 의해 결정된다. 본 연구에서는 각 학습인자의 영향을 최적화하였으며, IWD의 불규칙성을 고려하여 주어진 학습인자에 대해서 100개의 모델을 발생하고, 이중 최소의 IWD를 갖는 모델을 선택하였다. 최적화한 식각률과 표면거칠기 모델의 RMSE는 각기 26 nm/min과 0.103 nm이었다. 통계적인 회귀모델과 비교하여, 식각률과 표면거칠기 모델은 각기 52%와 24%의 향상된 예측정확도를 보였다. 이로써 RBFN이 플라즈마 공정을 효과적으로 모델링 할 수 있음을 확인하였다.

  • PDF

Fault Detection & SPC of Batch Process using Multi-way Regression Method (다축-다변량회귀분석 기법을 이용한 회분식 공정의 이상감지 및 통계적 제어 방법)

  • Woo, Kyoung Sup;Lee, Chang Jun;Han, Kyoung Hoon;Ko, Jae Wook;Yoon, En Sup
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.32-38
    • /
    • 2007
  • A batch Process has a multi-way data structure that consists of batch-time-variable axis, so the statistical modeling of a batch process is a difficult and challenging issue to the process engineers. In this study, We applied a statistical process control technique to the general batch process data, and implemented a fault-detection and Statistical process control system that was able to detect, identify and diagnose the fault. Semiconductor etch process and semi-batch styrene-butadiene rubber process data are used to case study. Before the modeling, we pre-processed the data using the multi-way unfolding technique to decompose the data structure. Multivariate regression techniques like support vector regression and partial least squares were used to identify the relation between the process variables and process condition. Finally, we constructed the root mean squared error chart and variable contribution chart to diagnose the faults.