• Title/Summary/Keyword: EtOAc layer

Search Result 35, Processing Time 0.019 seconds

Isolation and Structural Determination of Free Radical Scavenging Compounds from Korean Fermented Red Pepper Paste (Kochujang)

  • Chung, Jin-Ho;Shin, Heung-Chule;Cho, Jeong-Yong;Kang, Seong-Koo;Lee, Hyoung-Jae;Shin, Soo-Cheol;Park, Keun-Hyung;Moon, Jae-Hak
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.463-470
    • /
    • 2009
  • Sixteen antioxidative active compounds isolated from the EtOAc layer of MeOH extracts of kochujang, Korean fermented red pepper paste, were structurally elucidated as fumaric acid, methyl succinate, succinic acid furan-2-yl ester methyl ester (gochujangate, a novel compound), 2-hydroxy-3-phenylpropanoic acid, 3,4-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 6,7-dihydroxy-2H-chromen-2-one (esculetin), caffeic acid, cis-p-coumaric acid, trans-p-coumaric acid, daidzin, genistin, apigenin 7-O-$\beta$-D-apiofuranosyl($1{\rightarrow}2$)-$\beta$-D-glucopyranoside, apigenin 7-O-$\beta$-Dglucopyranoside, and quercetin 3-O-$\alpha$-L-rhamnopyranoside by mass spectrometry (MS) and nuclear magnetic resonance (NMR) experiments. These compounds were analyzed for the first time as antioxidants from kochujang.

Inhibitory Activity of Flavonoids from Prunus davidiana and Other Flavonoids on Total ROS and Hydroxyl Radical Generation

  • Jung, Hyun-Ah;Jung, Mee-Jung;Kim, Ji-Young;Chung, Hae-Young;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.809-815
    • /
    • 2003
  • Since reactive oxygen species (ROS) and hydroxyl radicals ($^-OH$) play an important role in the pathogenesis of many human degenerative diseases, much attention has focused on the development of safe and effective antioxidants. Preliminary experiments have revealed that the methanol (MeOH) extract of the stem of Prunus davidiana exerts inhibitory/scavenging activities on 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals, total ROS and peroxynitrites ($ONOO^-$). In the present study, the antioxidant activities of this MeOH extract and the organic solvent-soluble fractions, dichloromethane (CH$_2$Cl$_2$), ethyl acetate (EtOAc), and n-butanol (n-BuOH), and the water layer of P. davidiana stem were evaluated for the potential to inhibit $^-OH$ and total ROS generation in kidney homogenates using 2',7'-dichlorodihydrofluorescein diacetate (DCHF-DA), and for the potential to scavenge authentic $ONOO^-$. We also evaluated the inhibitory activity of seven flavonoids isolated from P. davidiana stem, kaempferol, kaempferol 7-Ο-$\beta$-D-glucoside, (+)-catechin, dihydrokaempferol, hesperetin 5-Ο-$\beta$-D-glucoside, naringenin and its 7-Ο-$\beta$-D-glucoside, on the total ROS, $^-OH$ and $ONOO^-$ systems. For the further elucidation of the structure-inhibitory activity relationship of flavonoids on total ROS and 'OH generation, we measured the antioxidant activity of sixteen flavonoids available, including three active flavonoids isolated from P. davidiana, on the total ROS and 'OH systems. We found that the inhibitory activity on total ROS generation increases in strength with more numerous hydroxyl groups on their structures. Also, the presence of an ortho-hydroxyl group, whether on the Aring or S-ring, and a 3-hydroxyl group on the C-ring increased the inhibitory activity on both total ROS and $^-OH$ generation.

Chemical Constituents of the Culture Broth of Panus rudis

  • Song, Ja-Gyeong;Ha, Lee Su;Ki, Dae-Won;Choi, Dae-Cheol;Lee, In-Kyoung;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.49 no.6
    • /
    • pp.604-606
    • /
    • 2021
  • In our ongoing search for new secondary metabolites from fungal strains, one novel compound (1) and nine known compounds (2-10) were isolated from the EtOAc-soluble layer of the culture broth of Panus rudis. The culture broth of P. rudis was extracted in acetone and fractionated by solvent partition; column chromatography using silica gel, Sephadex LH-20, and Sephadex G-10; MPLC; and HPLC. The structures of isolated compounds were elucidated by one- and two-dimensional NMR and LC-ESI-mass measurements. One new compound, panepoxydiol (1), and nine known compounds, (E)-3-(3-hydroxy-3-methylbut-1-en-1-yl)-7-oxabicyclo[4.1.0]hept-3-ene-2,5-diol (2), isopanepoxydone (3), neopanepoxydone (4), panepoxydone (5), panepophenanthrin (6), 4-hydroxy-2,2-dimethyl-6-methoxychromane (7), 6-hydroxy-2,2-dimethyl-3-chromen (8), 2,2-dimethyl-6-methoxychroman-4-one (9), 3,4-dihydroxy-2,2-dimethyl-6-methoxychromane (10), were isolated from the culture broth of P. rudis. This is the first report of isolation of a new compound panepoxydiol (1) and nine other chemical constituents (2-5, 7-10) from the culture broth of P. rudis.

Vitis amurensis Ruprecht root inhibited ${\alpha}$-melanocyte stimulating hormone-induced melanogenesis in B16F10 cells

  • Jin, Kyong-Suk;Oh, You Na;Hyun, Sook Kyung;Kwon, Hyun Ju;Kim, Byung Woo
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.509-515
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: The root of Vitis amurensis Ruprecht, a sort of wild-growing grape, has been used in oriental medicine for treatment of skin ailments; however, its dermatological activity is not sufficiently understood. The aim of this study was to investigate tyrosinase inhibitory and anti-melanogenic activities of V. amurensis Ruprecht root methanol extract (VARM) in B16F10 mouse melanoma cells and to attempt to isolate and identify the active compound issued from VARM. MATERIALS/METHODS: Anti-melanogenic activity of VARM was analyzed in ${\alpha}$-melanocyte stimulating hormone (MSH)-stimulated B16F10 cells through evaluation of antioxidative activity as well as inhibited tyrosinase activity and melanin contents compared with those of kojic acid and arbutin. After anti-melanogenic analysis of VARM, serial fractionation, nuclear magnetic resonance (NMR), and thin layer chromatorgraphy (TLC) were applied for identification of active compounds contained in VARM. RESULTS: VARM significantly inhibited oxidative stress and tyrosinase activity and attenuated ${\alpha}$-MSH-induced melanin production in B16F10 cells. For isolation of active compounds, VARM was fractionated using a series of organic solvents, including dichloromethane ($CH_2Cl_2$), ethyl acetate (EtOAc), and n-butanol (n-BuOH). Among fractions showing anti-melanogenic activity, the CH2Cl2 fraction induced the most potent attenuation of melanogenesis without cytotoxicity and the major compound in the $CH_2Cl_2$ fraction was identified as betulinic acid. Betulinic acid isolated from the $CH_2Cl_2$ fraction of VARM significantly attenuated ${\alpha}$-MSH-induced melanogenesis in a dose dependent manner, which was stronger than that of arbutin used as a positive control. CONCLUSIONS: These results indicate that VARM inhibits oxidative stress, tyrosinase activity, and ${\alpha}$-MSH-induced melanogenesis in B16F10 cells, due primarily to the active compound, betulinic acid, in the $CH_2Cl_2$ fraction.

Antioxidant and anti-inflammatory activities of extracts from Ledum palustre L. (백산차 추출물의 항산화 및 항염증 활성)

  • Kim, Se Gie
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.1025-1033
    • /
    • 2017
  • In this study, Ledum palustre L. was extracted by 4 different methods (LPW, hot water extraction; LPA, autoclave extraction; LPU, ultrasonification extraction; LPE, 70% ethanol extraction) and LPE was fractionated by using polarity difference of each solvent and used as 4 samples (LPE/H, the n-hexane layer; LPE/E, the EtOAc layer; LPE/B, the n-BuOH layer; LPE/W, the $H_2O$ layer). Antioxidant activities of Ledum palustre L. extracts were measured by DPPH and ABTS. As a result, the DPPH and ABTS radical scavenging showed high activities with LPE (82.3%, 99.8%) and LPE/E (91.8%, 99.6%) at the concentration of $1,000{\mu}g/mL$. The anti-inflammatory activities of LPE and LPE/E were measured by the inhibitory activity against NO, $PGE_2$, TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 production on LPS-stimulated Raw 264.7 macrophages. As a result of MTT assay, cell viabilities of LPE and LPE/E were more than 90% at $25{\mu}g/mL$. NO and $PGE_2$ productions were inhibited by LPE (NO: 50%, $PGE_2$: 70%) and LPE/E (NO: 57%, $PGE_2$: 73%) at the concentration of $25{\mu}g/mL$. The inhibition activities against TNF-${\alpha}$, IL-$1{\beta}$, IL-6 production were 24%, 47% and 40% at the concentration of $25{\mu}g/mL$ of LPE. In particular, LPE/E showed 51%, 57% and 62% inhibition activities at the same concentration, respectively. From the above results, it can be concluded that $1,000{\mu}g/mL$ of LPE and LPE/E have the high antioxidant activities similar with Vitamin C, and $25{\mu}g/mL$, the low concetration of LPE and LPE/E have excellent anti-inflammatory activities. Therefore, if more research about anti-aging, whitening and antimicrobial activity of Ledum palustre L. extracts is carried out in the future, it will be possible to use them as effective materials for the prevention and treatment of inflammatory diseases and in the areas of functional foods and cosmetics.