• Title/Summary/Keyword: Estuary Dike of the Youngsan River

Search Result 9, Processing Time 0.031 seconds

Environment Design of an Estuary Dike on the Youngsan-River (영산강 하구둑 환경설계)

  • 배현미
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.1
    • /
    • pp.44-51
    • /
    • 2002
  • The objective of this project is to improve the environment of the estuary dike on the Youngsan-River through Re-landscaping. An estuary dike of the Youngsan-River, the largest in the Orient, was constructed in 1981 and connects Mokpo City and Youngam-Gun province. Twenty years ago, when this dike was completed, this place was one of the famous tourist attractions of Korea. It symbolized the development and growth of Korea. But this dike at present is only a dreary sight as a huge concrete construction element. Therefore, a wall painting on the estuary dike was planned to improve this image. The site, an estuary dike of the Youngsan-River, is located in Mokpo City and its length is about 1,360m. The planning focus of this re-landscaping, which is a proposed improvement design through the analysis of characteristics and problems in conventional facilities, is as follows: (1) Introduction of a wall painting that is a symbol of the sea and river (by the creation of an illusion), (2) Production of the wall painting which is under consideration to create a friendly atmosphere of the circumference view and (3) Preparation of a design to establish an approach to the waterfront. By following these steps, an estuary dike can function as a tourist attractions and can be transformed in to cultural space for civilian. This project is good example of environment design that is completed with the regional residents participation through community input in the planning and initiation of a wall painting. The concept of environment design which involves the residents participation and re-landscaping in Korea has not been established up to now on. However, as this projects has proven, consideration for regional residents is a very important factor for the administrative office and planing specialist to address. In the future, it will have a direct influence on the development of design planning. If the establishment of space that can be accepted by residents with love, affection and self-confidence is possible, environment design in which residents participate actively, can be realized.

Organic Matter in the Sediments of Youngsan River Estuary : Distribution and Sources (영산강 하구역 퇴적물의 유기물 분포와 기원)

  • Woo, Jun-Sik;Choi, Heeseon;Lee, Hyo-Jin;Kim, Tae-Ha
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1375-1383
    • /
    • 2014
  • Total organic carbon(TOC), Total nitrogen(TN), and carbon and nitrogen stable isotopes were measured in the sediment and suspended parties in fresh lake water and saline estuarine water to determine the sources of Particulate organic matter(POM) in the sediments of the Youngsan river estuary. POM in the freshwater discharge water was mostly phytoplankton origin with little trace of terrestrial plants. POM from phytoplankton blooms formed in estuarine water in response to the nutrient enriched freshwater discharges was the most important sources of POM in the sediment near the dike, comprising more than 40% of the total organic matter. POM from freshwater phytoplankton and oceanic phytoplankton were also important sources of the sediment POM, and their contributions varied with the distances from the dike. Contribution of freshwater phytoplankton to sediment POM decreased from the dike to the outside of the estuary.

Phytoplankton Community and Surrounding Water Conditions in the Youngsan River Estuary: Weekly Variation in the Saltwater Zone (영산강 하구의 식물플랑크톤 군집 및 수 환경: 해수역의 주별 변동)

  • Sin, Yongsik;Yu, Haengsun
    • Ocean and Polar Research
    • /
    • v.40 no.4
    • /
    • pp.191-202
    • /
    • 2018
  • In this study we conducted a weekly monitoring exercise at a fixed station in the saltwater zone during the dry season (Jan-Mar, 2013) and wet season (Jun-Aug, 2013) to understand the fluctuations in phytoplankton communities and environmental factors in the Youngsan River estuary altered by a dike constructed in the coastal area. Phytoplankton communities displayed seasonality; diatoms were dominant during the dry season whereas dinoflagellates were dominant during the wet season. T-test analysis showed that water temperature was significantly different between the seasons whereas freshwater discharge from the dike was not significantly different. This suggests that seasonal variations of phytoplankton are more likely affected by water temperature than freshwater discharge. However, a short-term fluctuation was also observed in response to freshwater discharge; freshwater species appeared during or after the discharge in the dry and wet seasons and blooms of harmful species developed after the discharge. Phytoplankton communities may be affected by changes in physical factors such as turbidity and salinity and nutrient supply resulting from freshwater discharge. Especially, the nutrient supply may directly contribute to the harmful algal blooms (HABs) composed of dinoflagellates which can adapt to low salinity after freshwater discharge.

Long-term Change of Phytoplankton Biomass (chlorophyll-a), Environmental Factors and Freshwater Discharge in Youngsan Estuary (하구언 담수방류와 영산강 하구 식물플랑크톤 생체량 및 환경인자의 장기변동)

  • Yoon, Bo-Bae;Lee, Eo-Jin;Kang, Tae-Ahn;Shin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.205-214
    • /
    • 2013
  • In Yeongsan River estuary, located in the southern West Coast, a dike was constructed in December 1981. After the construction of a dike, discharge mechanism of fresh water has been changed, the water quality and chlorophyll-a are expected to be influenced by fresh water discharge. We investigated temporal and spatial variations and long-term trend of phytoplankton biomass (chlorophyll-a) and environmental factors. The concentrations of nutrient and chlorophyll-a were generally high in summer and the concentrations were increased toward downstream. Surface/bottom salinity difference was negatively correlated with salinity in surface water but positively with nutrient and chlorophyll-a. TN, TP and DIN concentrations were generally increased over 10 years. This study can provide information for better management of water quality for Youngsan River estuary.

Effect of Salinity Change on Biological Structure between Primary Producers and Herbivores in Water Column (해수층의 염분 변화가 일차생산자와 상위소비자의 크기구조에 미치는 영향)

  • SIN, YONGSIK;SOH, HOYOUNG;HYUN, BONGKIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.2
    • /
    • pp.113-123
    • /
    • 2005
  • Samples were collected to investigate the effect of salinity change on biological interaction between primary producers and herbivores in water column of the Youngsan estuary (Mokpo Harbor) at 8 stations from October 2003 to September 2004. The highest river freshwater inputs were introduced into the estuary from the Youngsan dike during summer (June and July 2004). Ranges of salinity were between 6 and 28.9 psu when the gates of dike were open whereas the ranges were between 24.4 and 30.3 psu when the gates were closed. Algal bloom occurred in February and July when the gates were not open at the upper region of the Youngsan estuary and the bloom was dominated $(70\%)$ by large cells of phytoplankton $(micro-sized;>20{\mu}m).\;Nano-sized (2-20{\mu}m)$ and pico-sized phytoplankton $(<2{\mu}m)$ were dominant in October, November 2003, June, August and September 2004 when the gates were open suggesting that size structure was affected by river discharge from the dike. Micro-and meso-zooplankton (herbivores) displayed the similar pattern to that of phytoplankton. The biomass of zooplankton was higher when the gates were closed than when the gates open and also the biomass was higher at the upper region of the harbor system. This results suggest that freshwater inputs affect size structure and biomass of phytoplankton by changing salinity, nutrient inputs, turbidity or light level In water column resulting in the change of the interaction between primary producters and herbivores in the Youngsan estuary.

Bacterial Distribution and Relationship with Phytoplankton in the Youngsan River Estuary (영산강 하구의 박테리아 분포 및 식물플랑크톤과의 관계)

  • Kim, Se Hee;Sin, Yong Sik
    • Journal of Marine Life Science
    • /
    • v.4 no.2
    • /
    • pp.53-62
    • /
    • 2019
  • Heterotrophic bacteria are a major member of the microbial loop in the marine ecosystem and play an important role in the biogeochemical cycle decomposing organic matter. Therefore study of bacterial variation is important to understand the material cycle and energy flow of marine ecosystems. We investigated the monthly variations of bacteria and environmental factors in the Youngsan River estuary, and the correlation between bacteria and phytoplankton biomass (chlorophyll-a) including size-structure. As a result, bacteria of the Youngsan River estuary were higher in the surface than in the bottom layer, and higher in the summer than in winter. And the closer to the dike, the abundance increased, and it increased to the peaks in August, September, and June 2019 at the station closest to the dike. The chlorophyll-a also increases at the stations and time when the bacterial abundance was high and they correlates positively displaying no difference between size fractions. The results indicate that organic matter derived from phytoplankton has an effect on bacterial variation but no size-dependent effects. In addition, the seasonal pattern of bacteria increasing in proportion to the water temperature suggests the effect of water temperature on the growth of bacteria. No association of bacterial abundance variation with nutrient supply due to freshwater input was observed. In this study, dissolved oxygen was depleted and hypoxia was observed for a short time when a strong stratification was not developed. This may be resulted from the supply of organic matter from phytoplankton and the consumption of oxygen due to bacterial decomposition.

Trends of Phytoplankton Community and Water Quality and Implications for Management in Estuarine River Systems (국내 연안 하구역의 식물플랑크톤 생체량 (chlorophyll a) 및 수질 동향)

  • Lee, Chang-Hee;Cho, Ki-An;Song, Eun-Sook;Sin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.2 s.112
    • /
    • pp.160-180
    • /
    • 2005
  • Long-term data (Ministry of Environment Water Quality Monitoring data) of phytoplankton biomass (chlorophyll a) and water quality were analyzed to investigate trends in biomass of the primary producers and water quality for the estuarine systems in Korea: Sumjin River, Han River, Asan Lake- Bay, Youngsan River, Keum River and Nakdong River. The literatures were also reviewed to examine the characteristics of phytoplankton biomass and water quality in the estuarine systems. The Sumjin River estuary, the single estuary without a dike in Korea showed the characteristics similar to other typical estuarine systems. Phytoplankton biomass was high during the fall at transitional regions (5 ${\sim}$ 15 psu) after riverine freshwater inputs were increased in summer. Concentrations of the nitrate and silicate were increased with the high river discharge rates. Phytoplankton biomass and nutrient concentrations were high during spring at the lower regions in the Han River whereas phytoplankton biomass and nutrient concentrations were high during spring at the upper regions in the Youngsan River. Phytoplankton biomass was the highest in the Asan Lake and nutrient concentrations were high at the upper region of the lake. In Nakdong River, phytoplankton biomass was high during winter and the biomass was slightly higher at upper region than at lower region. Long-term trends showed that total nitrogen and total phosphorus were mostly increased in the river systems. Implications of these results relevant to the water quality management for the river systems were also discussed.

Community Structure of the Macrobenthos in the Soft Bottom of Youngsan River Estuary, Korea 1. Benthic Environment (영산강 하구역의 연성저질에 서식하는 저서동물 군집 1. 저서환경)

  • LIM Hyun-Sig;PARK Kyung-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.330-342
    • /
    • 1998
  • Benthic environmental parameters were analysed at 40 stations during the period from April 1995 to February 1996. such as water temperature, salinity, and dissolved oxygen (DO)-concentration in the surface and bottom water layers, grain size, chemical oxygen demand (COD), ignition loss, particulate organic carbon (POC) in the sediment of Youngsan River estuary. The water temperature ranged from 4.1 to $29.8^{\circ}C$ in the surface and 4.0 to $20.7^{\circ}C$ in the bottom layers. Salinity ranged from 15.1 to $33.6\%_{\circ}$ in the surface and 31.5 to $33.2\%_{\circ}$ in the bottom layer. The salinity in the outer pan of the study area was higher than that of inner area from autumn to spring, whereas they remained lower in summer. Dissolved oxygen concentration ranged from 5,1 to 11.2 $mg/\ell$ in the surface, and 0.79 to 10,2 $mg/{\ell}$ in the bottom layers. Hypoxic condition ($\le2.0mg/\ell$) was developed in the bottom water layer from Youngsan dike to Mokpo Harhour in summer due to the summer stratification. The surface sediment type was silty clay with a mean grain size of $9.12{\pm}0.45\phi$. The range of COD was from 6.15 to $15.49mgO_2/g$ with a mean of $10.59{\pm}12.64mgO_2/g$. The COD in the inner stations was relatively higher than that of outer stations, and decreased toward the outer part of the study area. Ignition loss (IL) ranged from 3.35 to $15.45\%$ with a mean of $5.96{\pm}1.91\%$. Principal component analysis was carried out from the following five environmental parameters: water temperature, dissolved oxygen in the bottom layer and mean grain size, clay content and COD in the sediment. The forty stations in the study area were classified into three stational groups. Group I was located in the inner part of the estuary characterised by relatively low surface salinity and bottom water temperature, fine sedimemt texture, high organic matter and low dissolved oxygen concentration during the summer. Meanwhile, Group III showing relatively high bottom salinity and water temperature was located in the outer part of the estuary characterising coarse sediment and low organic content in sediment. Group II was between Group I and Group III. The division of the areal groups had high correlations to the DO in the bottom layer and clay content in the sediment.

  • PDF

Community Structure of the Macrobenthos in the Soft Bottom of Yongsan River Estuary, Korea 2. The Occurrence of Summer Hypoxia and Benthic Community (영산강 하구역의 연성저질에 서식하는 저서동물 군집 2. 여름철 빈산소 수괴의 출현과 저서동물 분포)

  • LIM Hyun-Sig;PARK Kyung-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.343-352
    • /
    • 1998
  • The relationship between summer hypoxia in bottom water layer and benthic community structure was discussed at forty sampling stations in semi-enclosed Youngsan River estuarine bay, Korea. The oxygen deficient layer less than $2.0 mg/\ell$ was widely developed in the inner estuarine stations in summer due to the summer stratification. A total of 141 species was occurred, with a mean density of $1,923 ind./m^2$ and biomass of $79.44\;g/m^2$ in summer season. The species number was significantly increased with the increment of the bottom dissolved oxygen, whereas density and biomass were partially correlated within the low oxygen level of $2.0\;mg/\ell$. These results imply that benthic community structures are affected by bottom oxygen depletion in summer. Cluster analysis showed that the benthic community could be classified into three station groups. These station groups from the species composition coincided with the groups based on the environmental factors. This fact suggests that the overall spatial distribution of macrozoobenthos in Youngsan River estuarine bay in summer should be controlled by the summer hypoxia and clay content of the area. Group-I was located the innermost estunrine bay from Mokpo Harbour to near the dike, where summer hypoxia was developed and one bivalve Theora fragilis, two polychaetes, Tharyx sp. and Lumbrineris longifolia were dominated. Group-II, the central transitory area of the estuarine bay between two another stational groups, where two bivalves Theora fragilis, Raetellops pulchella and a polychaete Tharyx sp. predominated with relatively low density compared to that of Group-I. Group-III, the mouth part of the estunrine bay exposed to the open sea, where a polychaetes Poecilochaetus johnsoni and a bivalve Yoldia Johanni predominated.

  • PDF