• Title/Summary/Keyword: Estuarine processes

Search Result 38, Processing Time 0.033 seconds

Ecological Design of Estuarine Environment (하구환경의 생태적 설계)

  • 양홍모
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.23 no.2
    • /
    • pp.167-181
    • /
    • 1995
  • An Ecocomplex is proposed for ecological design of the estuarine environment of Han River, which is designed upon an alternative mamagement concept of estuarine environment. The concept reveals interrelationships among estuary, delta region and urban inland with inputs/outputs and feedbacks among them. The Ecocomplex emphasizes an integration of wastewater treatment with aquaculture, agriculture and recreation, and carries out ecological treatment, recycling, and harvest processes. A module of wastewater treatment pond system is employed in the Ecocomplex, which treats a flow of 3,786 ㎥/day and is composed of a four-facultative-pond series. Treatment ponds stabilize wastewater discharged from the urban area, and concurrently produce algae for commercial or recreational fish farming. Effluent from treatment and fish ponds is reused for agricultural production. Through the waste-algae-fish-vegetable-recreation processes, wastewater from the urban settlement is recycled back to the urban ecosystem. This resource-conserving design approach can maintain a sustainable urban ecosystem, managing an estuarine environment more naturally, healthly, and economically.

  • PDF

Impact of Estuarine Dams on the Estuarine Parameter Space and Sediment Flux Decomposition: Idealized Numerical Modeling Study

  • Figueroa, Steven M.;Lee, Guan-hong;Chang, Jongwi;Lagamayo, Kenneth D.;Jung, Nathalie W.;Son, Minwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.276-276
    • /
    • 2022
  • Estuarine dams are constructed for securing freshwater resources, flood control, and improving upstream navigability. However, their impact on estuarine currents, stratification, and sediment fluxes is not well understood. To develop a general understanding, an idealized modeling study was carried out. Tide and river forcing were varied to produce strongly stratified, partially mixed, periodically stratified, and well-mixed estuaries. Each model ran for one year. Next, the models were subject to the construction of an estuarine dam and run for another year. Then, the pre- and post-dam conditions were compared. Results showed that estuarine dams can amplify the tidal range and reduce the tidal currents. The post-dam estuaries tended to be a salt wedge during freshwater discharge and a bay during no freshwater discharge. For all estuaries, the estuarine turbidity maximum moved seaward, and the suspended sediment concentrations tended to decrease. In terms of sediment flux mechanisms, the estuarine dam increased the seaward river runoff for cases with strong river, and increased the landward tidal pumping for cases with strong tides.

  • PDF

Response of estuary flow and sediment transport according to different estuarine dam locations and freshwater discharge intervals

  • Steven Figueroa;Minwoo Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.519-519
    • /
    • 2023
  • Estuarine dams are a recent and global phenomenon. While estuarine dams can provide the benefit of improved freshwater resources, they can also alter estuarine processes. Due to the wide range of estuarine types and estuarine dam configurations, the effect of estuarine dams on estuaries is not well understood in general. To develop a systematic understanding of the effect of estuarine dam location and freshwater discharge interval on a range of estuarine types (strongly stratified, partially mixed, periodically stratified, and well-mixed), this study used a coupled hydrodynamic-sediment dynamic numerical model (COAWST) and compared flow, sediment transport, and morphological conditions in the pre- and post-dam estuaries. For each estuarine type, scenarios with dam locations at 20, 55 and 90 km from the mouth and discharge intervals of a discharge every 0.5, 3, and 7 days were investigated. The results were analyzed in terms of change in tide, river discharge, estuarine classification, and sediment flux mechanism. The estuarine dam location primarily affected the tide-dominated estuaries, and the resonance length was an important length scale affecting the tidal currents and Stokes return flow. When the location was less than the resonance length, the tidal currents and Stokes return flow were most reduced due to the loss of tidal prism, the dead-end channel, and the shift from mixed to standing tides. The discharge interval primarily affected the river-dominated estuaries, and the tidal cycle period was an important time scale. When the interval was greater than the tidal cycle period, notable seaward discharge pulses and freshwater fronts occurred. Dams located near the mouth with large discharge interval differed the most from their pre-dam condition based on the estuarine classification. Greater discharge intervals, associated with large discharge magnitudes, resulted in scour and seaward sediment flux in the river-dominated estuaries, and the dam located near the resonance length resulted in the greatest landward tidal pumping sediment flux and deposition in the tide-dominated estuaries.

  • PDF

Spatio-Temporal Dynamics of Estuarine Wetlands Related to Watershed Characteristics in the Han River Estuary (유역특성에 따른 한강하구 습지의 공간분포 및 변화분석)

  • Rho, Paik-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.344-354
    • /
    • 2007
  • Estuarine wetlands for 33 watersheds in the Han River estuary were delineated on topographic maps from the 1910s, 1970s, and 2000s. Then, these data were used to address the issue of spatial distribution and temporal variation. Watershed characteristics such as drainage density, location, watershed size, slope, and elevation were identified for each watershed to determine the relationship between watershed characteristics and spatial distribution of estuarine wetlands. The analysis of estuarine wetlands indicated that wetlands in the estuary had declined gradually between the 1910s and the 1970s, although most wetlands were lost since the 1970s mainly caused by the large development projects related to urban expansion in metropolitan Seoul. The sediment composition and formation processes of the wetlands differed with watershed location; mud flats dominate in the lower part of the estuary, and relatively more sandy and emergent-plant wetlands occur near the main channel and tributaries of the Han River. Relatively more estuary wetlands occur in large watersheds, which have high slopes and low elevations. Estuarine wetlands have been lost dramatically in the densely populated watershed regions (i.e., Han River Seoul, Han River Goyang, West Han River), while relatively more wetlands have remained in undeveloped regions, including the Lower Imjin River and Lower Han River. In particular, anthropogenic disturbance has played an important role in the loss of wetland through the conversion of wetland into agricultural and developed land.

MODELING LONG-TERM PAH ATTENUATION IN ESTUARINE SEDIMENT, CASE STUDY: ELIZABETH RIVER, VA

  • WANG P.F;CHOI WOO-HEE;LEATHER JIM;KIRTAY VIKKI
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.1189-1192
    • /
    • 2005
  • Due to their slow degradation properties, hydrophobic organic contaminants in estuarine sediment have been a concern for risks to human health and aquatic organisms. Studies of fate and transport of these contaminants in estuaries are further complicated by the fact that hydrodynamics and sediment transport processes in these regions are complex, involving processes with various temporal and spatial scales. In order to simulate and quantify long-term attenuation of Polycyclic Aromatic Hydrocarbons (PAH) in the Elizabeth River, VA, we develop a modeling approach, which employs the U.S. Environmental Protection Agency's water quality model, WASP, and encompasses key physical and chemical processes that govern long-term fate and transport of PAHs in the river. In this box-model configuration, freshwater inflows mix with ocean saline water and tidally averaged dispersion coefficients are obtained by calibration using measured salinity data. Sediment core field data is used to estimate the net deposition/erosion rate, treating only either the gross resuspension or deposition rate as the calibration parameter. Once calibrated, the model simulates fate and transport PAHs following the loading input to the river in 1967, nearly 4 decades ago. Sediment PAH concentrations are simulated over 1967-2022 and model results for Year 2002 are compared with field data measured at various locations of the river during that year. Sediment concentrations for Year 2012 and 2022 are also projected for various remedial actions. Since all the model parameters are based on empirical field data, model predictions should reflect responses based on the assumptions that have been governing the fate and sediment transport for the past decades.

  • PDF

Physiochemical Characteristics of Coastal Pseudo-Estuarine Environment Formed During the Summer Flood season in the South Coast of Korea (한국 남해 연안역에서 여름 홍수기에 형성된 연안 염하구 환경의 물리 -화학적 특성)

  • 임동일;엄인권;전수경;유재명;정회수
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.151-163
    • /
    • 2003
  • In this study, we investigated the physiochemical characteristics of temporal estuarine environment formed during the summer flood season (consecutive rainy days with average 50 mm day$^{-1}$ precipitation) in the coastal area of South Sea of Korea. The freshwater from the Seomjin River was characterized by lower temperature, salinity and pH, and high concentrations of COD and nutrients. In the summer flood season, such peculiar Somejin-River freshwater was dispersed southward along the coast of Yeosubando-Dolsando-Geumodo, form-ing temporal estuarine environment (defined as "Coastal Pseudo-Estuary" in this study) throughout the entire study area (as far as 60 km from the Seomjin River mouth). Compared to the winter dry season, the DIN/DIP ratio was almost doubled (16-36) during the summer flood season. This excessive nitrate supply during the summer flood season was probably due to nitrogenous fertilizer. Distribution and behaviors of physiochemical factors in this coastal pseudo-estuarine environment were controlled not only by the runoff of the Seomjun River (physical mixing of river water with seawater) but also by the biogeochemical estuarine processes which are mostly similar to those of the river estuary.r estuary.

Changes in Marine Environment by a Large Coastal Development of the Saemangeum Reclamation Project in Korea

  • Lie, Heung-Jae;Cho, Cheol-Ho;Lee, Seok;Kim, Eun-Soo;Koo, Bon-Joo;Noh, Jae-Hoon
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.475-484
    • /
    • 2008
  • The word 'Saemangeum' indicates an estuarine tidal flat in the southwestern part of the Korean peninsula. The Saemangeum Reclamation Project was launched as a national project in 1991 to reclaim a large coastal area of $401\;km^2$ by constructing a 33-km long dyke. The final dyke enclosure in April 2006 has transformed the tidal flat into lake and land. An integrated oceanographic study has been conducted since 2002 as a part of the Government Action Plan to monitor and assess changes in the marine environment. Prior to the dyke enclosure, the coastal environment in the Saemangeum was a complex system governed by tidal motion, estuarine processes, and coastal circulation of the Yellow Sea. The dyke construction has radically changed not only the estuarine tidal system inside the dyke, but also the coastal marine environment outside the dyke. Post to the dyke enclosure, subsequent changes such as red tide, hypoxia, and coastal erosion/deposition occur successively. Red tides appear almost the year round in the inner area. Even under the condition that the sluice gates are fully open, the water quality does not improve as much as the developers would expect, mainly due to the critical reduction of the hydrodynamic stirring power. We will introduce details of our monitoring program and significant changes in the Saemangeum marine environment, based on observations and model results.

Estuarine Behavior and Flux of Nutrients in the Seomjin River Estuary (섬진강 하구역에서 영양염의 하구내 거동과 플럭스)

  • 권기영;문창호;이재성;양성렬;박미옥;이필용
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.4
    • /
    • pp.153-163
    • /
    • 2004
  • In order to estimate the nutrient flux of the Seomjin River into the coastal waters of South Sea, and to understand the estuarine reactions during mixing between river water and seawater, we collected surface water along the salinity gradient in the Seomjin River estuary from Mar. 1999 to Apr. 2001. We found that nitrate and silicate were delivered by fluvial input, while phosphate was, supplied from disposed wastes in the Gwangyang Bay. Mean annual flux of dissolved inorganic nitrogen (DIN), phosphate and silicate into the Gwangyang Bay was estimated 10.9 molesㆍsec$^{-1}$(4,820 tonnesㆍyr$^{-1}$), 0.07 molesㆍsec$^{-1}$(68 tonnesㆍyr$^{-1}$), 13.3 molesㆍsec$^{-1}$(11,747 tonnesㆍy$^{-1}$), respectively. An evident removal of phosphate, silicate and ammonium at the mid-salinity zone during the dry season was attributed to the active uptake of phytoplankton, and consequently nutrient flux into the Gwangyang Bay was low. Whereas, during the flood season in summer, conservative or additional distribution of the nutrients was observed in the estuary. As a rsult nutrient flux into the Gwangyang Bay was maintained high. High concentrations of chlorophyll a and the active removal of nutrient during the dry season at the mid-salinity zone suggest that nutrient distribution in the Seomjin River estuary was mainly controlled by biological processes and nutrient fluxes into the Gwangyang Bay might be significantly modified of by the primary production.

Formation and Variation of Turbidity Maximum in the Neuse River Estuary, North Carolina, U.S.A. (Neuse강 하구의 최대혼탁수 형성과 변동)

  • KIM Seok-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.754-770
    • /
    • 1994
  • Suspended sediment distribution and water column processes in the upper Neuse River estuary, North Carolina, were monitored monthly from February 1988 through February 1989, in order to identify the turbidity maximum, to determine its temporal and spatial variation under changing conditions(freshwater runoff, wind, and tide). During most of the observation periods a weak turbidity maximum, associated with the estuarine circulation processes, developed at a flow convergence zone, near the upstream limit of salt intrusion. No turbidity maximum was found when the water column was vertically homogeneous with respect to salinity and when there was no consistent upstream bottom flow. Annual migration of the turbidity maximum, accompanied by migration of salt intrusion, was over 20 km of the upper estuary. Due to the coincidence of dominant wind direction(NE-SW) with the main orientation of the Pamlico-Neuse system, wind played the dominant role in dynamics of the turbidity maximum by influencing the degree of salinity stratification and the extent and strength of estuarine circulation. Tidal effects on the sediment dynamics were negligible.

  • PDF