• Title/Summary/Keyword: Estrogens

Search Result 105, Processing Time 0.024 seconds

Serum Estradiol and Prolactin Levels During Hyperstimulated Menstrual Cycles (과배란 유도시 혈청 Estradiol 및 Prolactin치의 동태에 관한 연구)

  • Shin, Young-Kwan;Lee, Jin-Yong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.14 no.1
    • /
    • pp.7-17
    • /
    • 1987
  • It appears that a major determinant of the success of in vitro fertilization is the selection of the optimal follicle containing an oocyte capable of being fertilized and producing a normal pregnancy. However, the hormonal basis of oocyte maturation is not well substantiated by the as yet available informations. It has been suggested that prolactin(PRL) may stimulate the formation of an oocyte maturation inhibitor and thus inhibit the maturation of oocyte. During the hyperstimulated menstrual cycles serum estradiol($E_2$) levels are markedly elevated, and it seems justified to assume that serum prolactin levels may be elevated since estrogens are potent stimulators of prolactin secretion. This study was carried out to ascertain the effect of the elevated serum estradiol levels on the serum prolactin levels in women undergoing ovarian hyperstimulation with either hMG and/or clomiphene citrate. Serum estradiol and prolactin profiles were measured from third menatrual cycle day to ovulation or ovum aspiration day in 11 normal menstruating women and 30 women who underwent an in vitro fertilization procedure with ovarian hyperstimulation by hMG, clomiphene citrate/hMG, clomiphene citrate. Ovum aspiration was performed 36 hours after hCG administration. The day of ovum aspiration or ovulation was designated Day 0. Serum estradiol levels increased progressively during the follicular phase and this rise peaked on Day-1 at a mean concentration of 1,204${\pm}$189.0pg/ml in Group II(hMG), 1,194${\pm}$167.9pg/ml in Group III(clomiphene citrate/hMG), 1,035${\pm}$195.1pg/ml in Group IV(clomiphene citrate) respectively and on Day -2 of 336${\pm}$34.5pg/ml in Group I(normal control). The elevated estradiol levels fen rapidly after ovulation or ovum aspiration. Serum estradiol values of hyperstimulated groups(Group II, III, IV) were significantly higher than that of control group(Group I) from Day -6 to Day +1, but there was no significant difference of estradiol values among the hyperstimulated groups. Serum prolactin levels increased and peaked on Day +1 at a mean concentration of 60.8${\pm}$14.4ng/ml in Group II, 34.2${\pm}$7.0ng/ml in Group III, 30.1${\pm}$5.7ng/ml in Group IV respectively, but no significant elevation was observed in Group I. Levels of estradiol and prolactin can be positively and significantly correlated in the hyperstimulated groups. However, the increase of serum prolactin levels in hMG group was significantly higher than those in clomiphene citrate/hMG or clomiphene citrate group.

  • PDF

The Timing of Aromatase Action for Sex Differentiation in the Nile Tilapia, Oreochromis niloticus (Tilapia Oreochromis niloticus의 성분화시 Aromatase의 작용시기)

  • Kwon, Joon-Yeong;Penman, David J;Kwon, Hyuk-Chu
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.197-202
    • /
    • 2006
  • Sex steroids are generally considered as natural sex inducers in fish, and aromatase (cytochrome P450 aromatase) that catalyzes androgens into estrogens in the steroidogenic pathway is also known to be involved in sex differentiation. The timing of aromatase action is, thus, of central importance in the study of fish sex differentiation. We treated sexually undifferentiated tilapia (Oreochromis niloticus) larvae with $Fadrozole^{TM}$, a non-steroidal aromatase inhibitor (AI), by immersing the fish in a solution containing AI during the sex differentiation period to narrow down the critical period of aromatase action. Fish were treated once at 11 or 13 days post fertilization (dpf), or twice at 11 and 13 dpf. The concentrations of AI at each time of the treatment were 0 mg/L (control), 50 mg/L or 100 mg/L. Survival rate was not statistically associated with AI immersion treatment (p>0.25). However, sex ratio was significantly altered by the treatment, with higher concentration and double immersion being more effective in masculinizing genetic females (p<0.05). These results suggest that aromatase action for sex differentiation in this fish species would begin at least from 11 dpf which is much earlier than previously expected, and that only 3 hours of brief immersion in AI solution is powerful enough to alter genetically programed sex.

  • PDF

Capacitation and acrosome reaction differences of bovine, mouse and porcine spermatozoa in responsiveness to estrogenic compounds

  • Ryu, Do-Yeal;Kim, Ye-Ji;Lee, June-Sub;Rahman, Md. Saidur;Kwon, Woo-Sung;Yoon, Sung-Jae;Pang, Myung-Geol
    • Journal of Animal Science and Technology
    • /
    • v.56 no.7
    • /
    • pp.26.1-26.10
    • /
    • 2014
  • Background: Endocrine disruptors are exogenous substance, interfere with the endocrine system, and disrupt hormonal functions. However, the effect of endocrine disruptors in different species has not yet been elucidated. Therefore, we investigated the possible effects of $17{\beta}$-estradiol (E2), progesterone (P4), genistein (GEN) and 4-tert-octylphenol (OP), on capacitation and the acrosome reaction in bovine, mouse, and porcine spermatozoa. In this in vitro trial, spermatozoa were incubated with $0.001-100{\mu}M$ of each chemical either 15 or 30 min and then assessed capacitation status using chlortetracycline staining. Results: E2 significantly increased capacitation and the acrosome reaction after 30 min, while the acrosome reaction after 15 min incubation in mouse spermatozoa. Simultaneously, capacitation and the acrosome reaction were induced after 15 and 30 min incubation in porcine spermatozoa, respectively. Capacitation was increased in porcine spermatozoa after 15 min incubation at the lowest concentration, while the acrosome reaction was increased in mouse spermatozoa after 30 min (P < 0.05). E2 significantly increased the acrosome reaction in porcine spermatozoa, but only at the highest concentration examined (P < 0.05). P4 significantly increased the acrosome reaction in bovine and mouse spermatozoa treated for 15 min (P < 0.05). The same treatment significantly increased capacitation in porcine spermatozoa (P < 0.05). P4 significantly increased capacitation in mouse spermatozoa treated for 30 min (P < 0.05). GEN significantly increased the acrosome reaction in porcine spermatozoa treated for 15 and 30 min and in mouse spermatozoa treated for 30 min (P < 0.05). OP significantly increased the acrosome reaction in mouse spermatozoa after 15 min (P < 0.05). Besides, when spermatozoa were incubated for 30 min, capacitation and the acrosome reaction were higher than 15 min incubation in E2 or GEN. Furthermore, the responsiveness of bovine, mouse and porcine spermatozoa to each chemical differed. Conclusions: In conclusion, all chemicals studied effectively increased capacitation and the acrosome reaction in bovine, mouse, and porcine spermatozoa. Also we found that both E2 and P4 were more potent than environmental estrogens in altering sperm function. Porcine and mouse spermatozoa were more responsive than bovine spermatozoa.

Characteristics of Phthalate Esters-exposed Boar Sperm during Boar Semen Storage (돼지 정액을 보관하는 동안 phthalate esters에 노출된 정자의 특성)

  • Lee, A-Sung;Lee, Sang-Hee;Lee, Seunghyung;Yang, Boo-Keun
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.395-401
    • /
    • 2019
  • Phthalate is a chemical endocrine disrupter and interfere with the action of hormones, estrogens, androgens and thyroid hormones. It also affect cardiovascular, metabolic, immune and reproductive system in the human and animals. Curcumin is antioxidant, anti-inflammatory activity and -cancer properties in the human. We studied whether phthalates damage viability, mitochondrial activity and membrane integrity of sperm in boar semen. We also treated curcumin with/without phthalates in the boar semen. Fresh boar semen was treated with phthalates and/or curcumin for examining sperm characteristics. Sperm characteristics, sperm motility, viability, mitochondrial activity, and membrane integrity were determined during storage of boar semen. Sperm motility and viability in dose-dependent manner decreased by di-n-butyl phthalate (DBP), mono-n-butyl phthalate (MBP) and di-2-ethylhexyl phthalate (DEHP, p<0.05). Phthalates also decreased mitochondrial activity and membrane integrity of sperm (p<0.05). However, sperm motility and viability were higher than untreated-curcumin when DBP, MBP and DEHP treated with a curcumin in boar semen (p<0.05). Mitochondrial activity and membrane integrity of sperm were higher in DBP- and MBP-treated semen with curcumin (p<0.05). In conclusion, phthalates can damage sperm viability and quality during the boar semen storage, and curcumin may protect the boar sperms from phthalates during storage term.

IN HUMAN BREAST CANCER MCF-7 CELLS, ESTROGEN INVOLVES IN CYPIA1 GENE EXPRESSION.

  • Hwang, J.E.;S.H.Eo;Cho, S.N.;Y.Y.Sheen
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.107-107
    • /
    • 1997
  • Cytochrome P450 enzymes have been intensively investigated in hepatic tissues and several mammalian cell lines. Compared to most studies about cytochrome P450 isozymes in liver in vivo and hepatic, cell lines in vitro, the study of cytochrome P450IA1 in human breast cancer cells could be very important to understand the mechanism of the regulation of CYPIA1 gene expression and cell growth. MCF-7 human breast cancer cells are well characterized to study estrogen and antiestrogen action due to the fact that they contain high level of estrogen receptor and have biological markers characterized. And also MCF-7 cells express high level of arylhydrocarbon hydroxylase activity and human cytochrome P450IA1 cDNA was cloned from MCF-7 cells. Ah receptor was characterized in many breast cancer cell lines and polycyclic aromatic hydrocarbon such as 3-MC induced the expression of CYPIA1 gene and cytochrome P450- dependent monooxygenase activity. We undertook a study to examine the effect of estrogens and other chemicals on the regulation of human CYPIA1 gene expression in MCF-7 cells via RTPCR analysis, that might help us to understand the mechanism of the regulation of CYPIA1 gene expression and MCF-7 cell growth. Expression vector containing the functional 5'-regulatory region of human CYPIA1 fused to the CAT reporter gene was transfected into estrogen receptor positive MCF-T cells or estrogen receptor negative MDA-MB-231 cells. After these cells were treated with various chemicals, RTPCR was carried out to measure both CYPIA1 mRNA and CAT mRNA levels. 1nM 3-MC increased in both P450 and CAT mRNA levels over those of control by two folds in MCF-7 cells but does not in MDA-MB-231 cells. Estrogen or tamoxifen or retinoic acid or chrysin decreased in both P450 and CAT mRNA levels that were induced by 3-MC in MCF-7 when each chemical was administered with 3-MC concomitantly. These results suggested that the level of CYPIA1 gene expression is modulated with estrogen-related molecules and make it possible to speculate that ER is related to CYPIA1 gene expression and cell growth in breast cancer cells. [Supported by grants from the Korean Ministry of Education ]

  • PDF