• Title/Summary/Keyword: Estimation of agricultural water use

Search Result 100, Processing Time 0.026 seconds

Uncertainty Characteristics in Future Prediction of Agrometeorological Indicators using a Climatic Water Budget Approach (기후학적 물수지를 적용한 기후변화에 따른 농업기상지표 변동예측의 불확실성)

  • Nam, Won-Ho;Hong, Eun-Mi;Choi, Jin-Yong;Cho, Jaepil;Hayes, Michael J.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.1-13
    • /
    • 2015
  • The Coupled Model Intercomparison Project Phase 5 (CMIP5), coordinated by the World Climate Research Programme in support of the Intergovernmental Panel on Climate Change (IPCC) AR5, is the most recent, provides projections of future climate change using various global climate models under four major greenhouse gas emission scenarios. There is a wide selection of climate models available to provide projections of future climate change. These provide for a wide range of possible outcomes when trying to inform managers about possible climate changes. Hence, future agrometeorological indicators estimation will be much impacted by which global climate model and climate change scenarios are used. Decision makers are increasingly expected to use climate information, but the uncertainties associated with global climate models pose substantial hurdles for agricultural resources planning. Although it is the most reasonable that quantifying of the future uncertainty using climate change scenarios, preliminary analysis using reasonable factors for selecting a subset for decision making are needed. In order to narrow the projections to a handful of models that could be used in a climate change impact study, we could provide effective information for selecting climate model and scenarios for climate change impact assessment using maximum/minimum temperature, precipitation, reference evapotranspiration, and moisture index of nine Representative Concentration Pathways (RCP) scenarios.

Estimation of Pollutant Loadings from Watershed into Lakes of Ganwol and Boonam (간월호 및 부남호의 유입 오염부하량 산정)

  • Lim, Kyeong-Ho;Lee, Young-Sin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.8 no.4
    • /
    • pp.33-40
    • /
    • 2006
  • The water of rivers and lakes in Korea is the main sources for drinking, industrial and agricultural purposes. However, various pollutants washed-off from watershed area make worse and worse the water quality. Particularly, the changes of land uses in watershed area is the main pollutant sources in many cases in Korea, it is usually called to nonpoint pollution sources. In this reason, the Ministry of Environment are programing the total maximum daily load for four major large rivers in order to improve the water quality by controlling the watershed area. Therefore, this research was performed to estimate the total pollutant input from watershed areas to lakes of Ganwol and Boonam located in Chungnamdo. The AGNPS water quality model and monitoring were used to estimate the pollutant loading rates with unit pollutant concentration of each land use. The main landuse of the research area are forest, wet and dry paddy field and small urban area. The research shows that the pollutant sources in Ganwol and Boonam lakes are from the various landuses. In this manuscripts, the results will provide important informations for mitigating the pollutants to the lakes.

  • PDF

Characteristics of Water Quality and Evaluation of Eutrophication for Reservoirs in Kunsan (군산지역 저수지의 수질특성 및 부영양화 평가)

  • Kim, Jong-Gu;O, Seung-Chul
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.357-367
    • /
    • 2007
  • Recently, eutrophication or lake and reservoir has become serious problem to man who want use that water for several purpose. In order to solve the eutrophication problem, the trophic state of that eutrophic lake and reservoir should be measured properly. For the purpose of this, various method to indicate the trophic state of lake and reservoir was developed by many researchers. This research was conducted to evaluate characteristics and eutrophication of water qualitymfor small scale reservoir in Kunsan. On-site investigation to 5 reservoirs and laboratory experiment were carried out during four seasons from November, 2003 to July, 2004. Twelve items measured field ana a laboratory. Measured data was analyzed to quantitative method by multivariate approach and eutrophication index. The result is summarized as following. 1) Showing the characteristics of water quality for reservoir in Kunsan, Okgu reservoir and Oknua reservoir was exceeded 4 grades of agricultural water standard in TP, TN and COD. This means that eutrophication was gone much, therefore, water-purity control of reservoir need. While, Mije reservoir that is used to Kunsan citizens' recreation was good in water quality. But, water quality exceeded 4 grades of agricultural Dater standard sometimes. 2) As a results of correlation analysis between variables of water qualify, Interrelation between variables which is connected with eutrophication was expressed good relationship as above 6.000 in correlation coefficients. The correlation coefficient(r) between COD and chlorophyll-a, total phosphorus and chlorophyll-a, total nitrogen and chlorophyll-a were 0.750, 0.720 and 0.600 respectively. Therefore, Change of water quality can grasp according to eutrophication progress degree. 3) If do evaluate to eutrophication by quantitative method which is proposed by OECD, US-EPA and Forsberg & Ryding, in the case of chlorophyll a, Okgu, Oknua and Daewi reservoir was eutrophic state and Mije and Geumgul reservoir was mesotrophic state. But, estimation by TN and TP showed highly eutrophic state (hypereutrophic) in all reservoirs. 4) If do evaluate by eutrophication index which is Carlson's TSI, revised carlson TSI and Walker's index, in the case of chlorophyll a, TSI values of Okgu, Oknua and Daewi reservoir is eutrophic state more than 50 and Mije and Geumgul reservoir was mesotrophic state as range of $40{\sim}50$ in TSI value. But, in the case of TP as nutrients, all reservoirs showed highly eutrophic state which was exceed to 70 in TSI value. According to above results, the water quality for small scale reservoirs in Kunsan is progressing by trophic state. therefore, for continuous use as agriculture water, we had better do establishment of management plan about water quality.

Pollutant Loading Estimates from Watershed by Rating Curve Method and SWMM

  • Jeon, Ji-Hong;Yoon, Chun-Gyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.419-425
    • /
    • 2000
  • Rating curve method and SWMM (Storm Water Management Model) were applied to estimate pollutant loading from Hwa-Ong watershed in Kyunggi-Do. Rating curves were derived from sampling sites and applied to the whole watershed. SWMM version 4.4 was calibrated by field data of sampling sites and applied to the whole watershed. The pollutant loading estimated by rating curve was slightly higher than the one by SWMM, but the difference was not significant considering diffuse pollution characteristics of wide variation. Land use effect of the subcatchments could not be incorporated logically in rating curve method and difficulty in extrapolation was experienced, therefore, the estimate by rating curve method was thought to be less confident. SWMM was satisfactory in estimation of pollution loading, and its great flexibility worked well to describe complex nonurban land uses. Neither of them could exactly describe complex natural phenomena, but SWMM was preferred in this study due to its flexibility and logical hydrologic processes including land use effects. Use of reasonable watershed model rather than rating curve method for watershed pollutant loading estimate can be more practical and is recommended.

  • PDF

Comparison Study of Water Tension and Content Characteristics in Differently Textured Soils under Automatic Drip Irrigation (자동점적관수에 의한 토성별 수분함량 및 장력 변화특성 비교 연구)

  • Kim, Hak-Jin;Ahn, Sung-Wuk;Han, Kyung-Hwa;Choi, Jin-Yong;Chung, Sun-Ok;Roh, Mi-Young;Hur, Seung-Oh
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.341-348
    • /
    • 2013
  • Maintenance of adequate soil tension or content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil tension and content for precision irrigation would allow optimal soil water condition to crops and minimize the adverse effects of water stress on crop growth and development. This research reports on a comparison of soil water tension and content variations in differently textured soils over time under drip irrigation using two different water management methods, i.e. pulse time and required water irrigation methods. The pulse time-based irrigation was performed by turning the solenoid valve on and off for preset times to allow the wetting front to disperse in root zone before additional water was applied. The required water estimation method was a new water control logic designed by Rural Development Administration that applies the amount of water required based on a conversion of the measured water tension into water content. The use of the pulse time irrigation method under drip irrigation at a high tension of -20 kPa and high temperatures over $30^{\circ}C$ was not successful at maintaining moisture tensions within an appropriate range of 5 kPa because the preset irrigation times used for water control could not compensate for the change in evapotranspiration during day and night. The response time and pattern of water contents for all of the tested soils measured with capacitance-based sensor probes were faster and more direct than those of water tensions measured with porous and ceramic cup-based tensiometers when water was applied, indicating water content would be a better control variable for automatic irrigation. The required water estimation-based irrigation method provided relatively stable control of moisture tension, even though somewhat lower tension values were obtained as compared to the target tension of -20 kPa, indicating that growers could expect to be effective in controlling low tensions ranging from -10 to -20 kPa with the required water estimation system.

A study on the estimation of river water intake using the operating time of the pumping station (양수장의 가동시간을 이용한 하천수 취수량 산정방안 연구)

  • Baek, Jongseok;Kim, Chiyoung;Cha, Jun-Ho;Song, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • Water management agencies under the Ministry of Environment produce and accumulate qualified basic data for major rivers. However, the integrated management of the river water has been weak since the artificial water circulation process, such as the intaking and drainage of agricultural water, has not been examined in the basin, which includes many agricultural land. In this study, a study was conducted on how the power usage method (operating time method) based on the running time can be applied and improved among indirect flow rate measurement methods used to investigate flow rates collected by the riverside for agricultural water purposes, and thus the resultant data of high reliability can be obtained at low cost. The operation time method is suitable for small-scale water pumping stations where it is difficult to secure real-time power supply data. The reliability of the data was verified through the correlation analysis with the actual flow rate, and it was found that the flow rate calculated by the operation time method reflecting the level of the stream to which the inlet of the pumping station is connected can be reasonably matched with the actual flow rate. In addition, it was confirmed that the investment cost at the time of initial installation of the facility was highly efficient by generating qualified flow data at low cost through comparison with direct flow rate measurement methods. If flow data is secured by applying the operation time method to large and small water farms located along the riverside, it is expected that more quantitative and integrated stream water management will be possible.

Estimation of Reference Crop Evapotranspiration Using Backpropagation Neural Network Model (역전파 신경망 모델을 이용한 기준 작물 증발산량 산정)

  • Kim, Minyoung;Choi, Yonghun;O'Shaughnessy, Susan;Colaizzi, Paul;Kim, Youngjin;Jeon, Jonggil;Lee, Sangbong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.111-121
    • /
    • 2019
  • Evapotranspiration (ET) of vegetation is one of the major components of the hydrologic cycle, and its accurate estimation is important for hydrologic water balance, irrigation management, crop yield simulation, and water resources planning and management. For agricultural crops, ET is often calculated in terms of a short or tall crop reference, such as well-watered, clipped grass (reference crop evapotranspiration, $ET_o$). The Penman-Monteith equation recommended by FAO (FAO 56-PM) has been accepted by researchers and practitioners, as the sole $ET_o$ method. However, its accuracy is contingent on high quality measurements of four meteorological variables, and its use has been limited by incomplete and/or inaccurate input data. Therefore, this study evaluated the applicability of Backpropagation Neural Network (BPNN) model for estimating $ET_o$ from less meteorological data than required by the FAO 56-PM. A total of six meteorological inputs, minimum temperature, average temperature, maximum temperature, relative humidity, wind speed and solar radiation, were divided into a series of input groups (a combination of one, two, three, four, five and six variables) and each combination of different meteorological dataset was evaluated for its level of accuracy in estimating $ET_o$. The overall findings of this study indicated that $ET_o$ could be reasonably estimated using less than all six meteorological data using BPNN. In addition, it was shown that the proper choice of neural network architecture could not only minimize the computational error, but also maximize the relationship between dependent and independent variables. The findings of this study would be of use in instances where data availability and/or accuracy are limited.

Estimation of Pollution Sources of Oenam Watershed in Juam Lake using Nitrogen Concentration and Isotope Analysis (주암호 외남천 유역 하천수의 질소농도와 동위원소비 분석을 이용한 오염원 평가)

  • Choi, Yujin;Jung, Jaewoon;Choi, Woojung;Yoon, Kwangsik;Choi, Dongho;Lim, Sangsun;Jeong, Juhong;Lim, Byungjin;Chang, Namik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.467-474
    • /
    • 2011
  • In an effort to investigate water pollution characteristics of Juam lake, water samples were collected from three sites (Sites A, B, and C) of Oenam stream which is a typical tributary of rural watershed in the lake and analyzed for N concentration and the corresponding isotope ratio (${\delta}^{15}N$) of ${NO_3}^-$. Concentrations of ${NO_3}^-$ were not dramatically different among the sites; $0.8{\pm}0.2mgNL^{-1}$ (range: $0.0{\sim}4.3mgNL^{-1}$) for Site A, $1.1{\pm}0.2mgNL^{-1}$ ($0.0{\sim}4.3mgNL^{-1}$) for Site B, and $1.1{\pm}0.1mgNL^{-1}$ ($0.1{\sim}2.6mgNL^{-1}$) for Site C. Meanwhile, ${\delta}^{15}N$ tended to decrease with river flow; it was highest for Site A ($45.5{\pm}5.3$‰) followed by Site B ($19.7{\pm}2.0$‰) and Site C ($8.7{\pm}1.5$‰). Such high ${\delta}^{15}N$ values of ${NO_3}^-$ in Site A suggested that ${NO_3}^-$ derived from livestock feedlot (specifically livestock excrete of which ${\delta}^{15}N$ is higher than 10‰) is the predominant pollution sources despite mountainous area occupied the most of land-use in the watershed. Using the two-sources isotope mixing model, it was estimated that the contribution of cropping activities (i.e. fertilization) became greater in down-stream area (Sites B and C) due to the higher agricultural land-use than the up-stream area (Site A). Particularly, during the active cropping season, the low contribution of organic pollution sources indicated that domestic sewage was not the predominant pollution source. Therefore, it was suggested that agricultural sources such as livestock farming and cropping rather than mountainous and residential are the dominant sources of water pollution in the study area. These results could be effectively utilized in elucidating water pollution sources in rural areas and selecting water management practices.

GIS AND WEB-BASED DSS FOR PRELIMINARY TMDL DEVELOPMENT

  • Choi, Jin-Yong;Bernard A. Engel;Yoon, Kwang-Sik
    • Water Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.19-30
    • /
    • 2003
  • TMDL development and implementation have great potential fur use in efforts to improve water quality management, but the TMDL approach still has several difficulties to overcome in terms of cost, time requirements, and suitable methodologies. A well-defined prioritization approach for identifying watersheds of concern among several tar-get locations that would benefit from TMDL development and implementation, based on a simple screening approach, could be a major step in solving some of these difficulties. Therefore, a web-based decision support system (DSS) was developed to help identify areas within watersheds that might be priority areas for TMDL development. The DSS includes a graphical user interface based on the HTML protocol, hydrological models, databases, and geographic information system (GIS) capabilities. The DSS has a hydrological model that can estimate non-point source pollution loading based on over 30 years of daily direct runoff using the curve number method and pollutant event mean concentration data. The DSS provides comprehensive output analysis tools using charts and tables, and also provides probability analysis and best management practice cost estimation. In conclusion, the DSS is a simple, affordable tool for the preliminary study of TMDL development via the Internet, and the DSS web site can also be used as an information web server for education related to TMDL.

  • PDF

A Study on the Method for Estimating Evapotranspiration from Paddy Fields (수도의 증발산량 추정방법에 관한 연구)

  • 허재석;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.2
    • /
    • pp.86-95
    • /
    • 1983
  • Evapotranspiration is a major factor determining the water consumption in the rice fields. Therefore, realistic evapotranspiration estimates are important to the agricultural water resources planning. In Korea, however, the Blaney-Criddle formula, which was developed under the meteorological condition of western arid United States and the upland cultivation, has been widely used to estimate evapotranspiration from paddy fields. Hence, it has considered that the Blaney-Criddle formula would not be the proper method for the Korean paddy condition. The purpose of this study is to select the most appropriate and realistic method for estimating evapotranspiraion from paddy field in Korea and to derive crop coefficients using the chosen method. The results are summerized as follows. 1. Total seasonal-average evapotranspiration by the field observation was 660mm for Tongil and 621. Ornm for the Japonica variety of rice. The amount of evapotranspiration for Tongil variety was 6% larger than that of the Japonica variety. 2. There was no significant differences in the amount of evapotranspiration among early, middle and late mature varieties, that is, early 638mm, middle 627mm and late 630mm for the whole growing season. 3. The rate of peak evapotranspiration appeared at the beginning of August and was in the range of 7.7-8. Omm/day according to the different mature varieties. 4. The correlation between pan evaporation data and the calculated evapotranspiration using related meteorological data from various methods suggested such as Radiation (FAO), Hargreaves, Christiansen, Hargreaves-Christiansen, Jensen-Haise, showed high statistic significance. Therefore, it seemed to use those formulars in estimating evapotranspiration inste4 of using pan evaporation data. 5. It was concluded from the analysis of field data that the evapotranspiration estimate for Blaney-Criddle method might not be appropriate in Korea. On the other hand, Penman equation showed more accurate estimation at the flourishing stage of rice than the pan evaporation method. 6. The crop coefficients for the Penman and pan-evaporation method were obtained by graphical representation.

  • PDF