• Title/Summary/Keyword: Estimation of Distance

Search Result 1,197, Processing Time 0.026 seconds

Development of Shear Extrusion Test for the Texture Evaluation of Cooked Noddle (삶은 국수의 조직감 평가를 위한 층밀림 압출 실험)

  • Yoo, Byoung-Seung;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.171-175
    • /
    • 1987
  • An objective method for the evaluation of eating quality of cooked noodle was established by using a specially designed shear extrusion cell of Rheometer. From the force-distance curve, the maximum force, initial force, extrusion work, and the slope were determined. In a test with Korean dried noodles made from 17 types of Australian wheat flour, the maximum and initial forces and extrusion work could represent the firm-soft and chewy character, which govern mostly the preference of cooked noodle. On the other hand, the slope could distinguish the textural changes of cooked noodle during the storage after cooking. The parameters showed significant correlation with the protein content, water absorption, development time and extensibility of flour, but no correlation was obtained with the maximum viscosity of viscogram. For the estimation of textural preference, the correlation coefficient obtained from a multiple regression analysis using the maximum viscosity of viscogram and the maximum force of shear extrusion test as the two independent variables was not significantly higher than the coefficient obtained from a simple regression with the maximum force only.

  • PDF

A Study on the Damage of Flame caused by the Vapor Cloud Explosion in LPG Filling Station (LPG충전소에서 증기운폭발에 의한 화염의 피해에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.53-60
    • /
    • 2010
  • LPG(Liquefied Petroleum Gas) vehicles in metropolitan area are being applied to improve air quality and have been proven effective for the reduction of air pollutant. In addition, LPG demand is growing rapidly as an environmentally friendly energy source and its gas station is also increasing every year. Consequently, this study tries to find out the influence of flame caused by the VCE(Vapor Cloud Explosion) in filling station on the adjacent combustibles and people by simulating relevant quantity of TNT. In addition, the damage estimation was conducted by using API regulations. If the scale of the radiation heat is known by calculating the distance of flame influence from the explosion site, the damage from the site can be easily estimated. And the accident damage was estimated by applying the influence on the adjacent structures and people into the PROBIT model. According to the probit analyze, the spot which is 30m away from the flame has 100% of the damage probability by the first-degree burn, 99.2% of the damage probability by the second-degree burn and 93.4% of the death probability by the fire.

Estimation of Air Pollutant Emissions for the Conversion of Diesel to CNG in the Busan Metropolitan Area (부산지역 경유버스를 CNG버스로 대체시 발생하는 대기오염물질 배출량 산정 및 변화 분석)

  • Bang, Jin-Hee;Kang, Yoon-Hee;Song, Sang-Keun;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.241-251
    • /
    • 2012
  • The emissions of several air pollutants ($NO_x$, CO, VOCs, etc.) for the replacement of all diesel buses by Compressed Natural Gas (CNG) buses were estimated in the Busan Metropolitan Area (BMA). These emissions were calculated from emission factors considering the different driving speeds with bus routes, distance traveled, and deterioration factors. For the purpose of this study, three categories of fuel type were selected: (1) the combination of diesel (65%) and CNG buses (35%) (DSL+CNG case), (2) all diesel buses (DSL case), and (3) all CNG buses (CNG case). The emissions of $NO_x$ and CO in the CNG case were estimated to be significant decreases (by about 50% and 98%, respectively) relative to the DSL case. Conversely, the emission of VOCs (980.7 ton/year) in the CNG case were a factor of 3.3 higher than that (299.8 ton/year) in the DSL case. In addition, the diurnal variations of emissions between two city buses (e.g. diesel and CNG) and all other vehicles were distinctly different because the two city buses operate at a regular time interval. Our overall results suggest the possibility that the pollutant emissions from the CNG buses can exert less influence on air quality in the target area than those from the diesel buses.

Estimation of Safety Zone of Tunnel due to Adjacent Structure (근접구조물에 의한 터널의 안전영역 평가)

  • Hwang, Taikjean
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3052-3060
    • /
    • 2013
  • When planning to construct adjacent structure by the side tunnel, the criteria of safety zone of tunnel have been proposed. There are no specific theoretical basis regarding load conditions and the distance of structure and the geological strata and the conditions of adjacent structure's location, and the conditions applied load. Two and three dimensional numerical analysis preformed to prove the deformation of the ground and structures caused by the tunnel excavation and evaluated the correlation and the suitability of the tunnel's safety zone regarding the location of adjacent structures and the changes in the modulus of deformation. This paper proposed the safety zone's range is getting bigger as the modulus of deformation is higher. Also, it seems that the possible range of construction under constraints in the diagram of revalued safety zone significantly expands as shear failure line appears on the invert extension line below the spring line.

Sensing Technologies for Grain Crop Yield Monitoring Systems: A Review

  • Chung, Sun-Ok;Choi, Moon-Chan;Lee, Kyu-Ho;Kim, Yong-Joo;Hong, Soon-Jung;Li, Minzan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.408-417
    • /
    • 2016
  • Purpose: Yield monitoring systems are an essential component of precision agriculture. They indicate the spatial variability of crop yield in fields, and have become an important factor in modern harvesters. The objective of this paper was to review research trends related to yield monitoring sensors for grain crops. Methods: The literature was reviewed for research on the major sensing components of grain yield monitoring systems. These major components included grain flow sensors, moisture content sensors, and cutting width sensors. Sensors were classified by sensing principle and type, and their performance was also reviewed. Results: The main targeted harvesting grain crops were rice, wheat, corn, barley, and grain sorghum. Grain flow sensors were classified into mass flow and volume flow methods. Mass flow sensors were mounted primarily at the clean grain elevator head or under the grain tank, and volume flow sensors were mounted at the head or in the middle of the elevator. Mass flow methods used weighing, force impact, and radiometric approaches, some of which resulted in measurement error levels lower than 5% ($R^2=0.99$). Volume flow methods included paddle wheel type and optical type, and in the best cases produced error levels lower than 3%. Grain moisture content sensing was in many cases achieved using capacitive modules. In some cases, errors were lower than 1%. Cutting width was measured by ultrasonic distance sensors mounted at both sides of the header dividers, and the errors were in some cases lower than 5%. Conclusions: The design and fabrication of an integrated yield monitoring system for a target crop would be affected by the selection of a sensing approach, as well as the layout and mounting of the sensors. For accurate estimation of yield, signal processing and correction measures should be also implemented.

Experimental observation and numerical simulation of cement grout penetration in discrete joints

  • Lee, Jong-Won;Kim, Hyung-Mok;Yazdani, Mahmoud;Lee, Hangbok;Oh, Tae-Min;Park, Eui-Seob
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.259-266
    • /
    • 2019
  • This paper presents a comparison between experimental measurements and numerical estimations of penetration length of a cement grout injected in discrete joints. In the experiment, a joint was generated by planar acryl plates with a certain separation distance (; aperture) and was designed in such a way to vary the separation distances. Since a cement grout was used, the grout viscosity can be varied by controlling water-cement (W/C) ratios. Throughout these experiments, the influence of joint aperture, cement grout viscosity, and injection rate on a penetration length in a discrete joint was investigated. During the experiments, we also measured the time-dependent variation of grout viscosity due to a hardening process. The time-dependent viscosity was included in our numerical simulations as a function of elapsed time to demonstrate its impact on the estimation of penetration length. In the numerical simulations, Bingham fluid model that has been known to be applicable to a viscous cement material, was employed. We showed that the estimations by the current numerical approach were well comparable to the experimental measurements only in limited conditions of lower injection rates and smaller joint apertures. The difference between two approaches resulted from the facts that material separation (; bleeding) of cement grout, which was noticeable in higher injection rate and there could be a significant surface friction between the grout and joint planes, which are not included in the numerical simulations. Our numerical simulation, meanwhile, could well demonstrate that penetration length can be significantly over-estimated without considering a time-dependency of viscosity in a cement grout.

Resolution Estimation Technique in Gaze Tracking System for HCI (HCI를 위한 시선추적 시스템에서 분해능의 추정기법)

  • Kim, Ki-Bong;Choi, Hyun-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.20-27
    • /
    • 2021
  • Eye tracking is one of the NUI technologies, and it finds out where the user is gazing. This technology allows users to input text or control GUI, and further analyzes the user's gaze so that it can be applied to commercial advertisements. In the eye tracking system, the allowable range varies depending on the quality of the image and the degree of freedom of movement of the user. Therefore, there is a need for a method of estimating the accuracy of eye tracking in advance. The accuracy of eye tracking is greatly affected by how the eye tracking algorithm is implemented in addition to hardware variables. Accordingly, in this paper, we propose a method to estimate how many degrees of gaze changes when the pupil center moves by one pixel by estimating the maximum possible movement distance of the pupil center in the image.

How to Set an Appropriate Scale of Traffic Analysis Zone for Estimating Travel Patterns of E-Scooter in Transporation Planning? (전동킥보드 통행분포모형 추정을 위한 적정 존단위 선정 연구)

  • Kyu hyuk Kim;Sang hoon Kim;Tai jin Song
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.51-61
    • /
    • 2023
  • Travel demand estimation of E-Scooter is the start point of solving the regional demand-supply imbalance problem and plays pivotal role in a linked transportation system such as Mobility-as-a-Service (a.k.a. MaaS). Most focuses on developing trip generation model of shared E-Scooter but it is no study on selection of an appropriate zone scale when it comes to estimating travel demand of E-Scooter. This paper aimed for selecting an optimal TAZ scale for developing trip distribution model for shared E-Scooter. The TAZ scale candidates were selected in 250m, 500m, 750m, 1,000m square grid. The shared E-Scooter usage historical data were utilized for calculating trip distance and time, and then applying to developing gravity model. Mean Squared Error (MSE) is applied for the verification step to select the best suitable gravity model by TAZ scale. As a result, 250m of TAZ scale is the best for describing practical trip distribution of shared E-Scooter among the candidates.

RFID System with Localization Function Based on Zigbee RSSI (Zigbee RSSI 기반의 위치추정 기능을 탑재한 RFID 시스템)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1201-1208
    • /
    • 2016
  • Radio Frequency Identification (RFID) technology has a significant attraction throughout various industry sites, along with the development of wireless communication technologies. The typical applications of RFID include medical, logistics, and distribution, and, specially, it is effectively applied to non-contact environments, because it employs radio waves. Although, recently, construction cases of the RFID management systems for the inventory management of the construction materials have been increased, the related researches and experiments for the reused materials are not actively performed. In this paper, we propose the RFID system with the localization function for effectively managing the reuse of the construction materials, adding to the conventional inventory management system. The proposed system consists of a RFID reader unit and a receiver unit, and the location information of the material with the attached RFID tag is obtained by estimating the position of a RFID reader. The distance value for estimating the reader position is calculated using the Received Signal Strength Indicator (RSSI) value of Zigbee, and the performance evaluation of the proposed system is performed in the indoor space of $5m{\times}5m$.

A Basic Study on Development of a Tracking Module for ARPA system for Use on High Dynamic Warships

  • Njonjo, Anne Wanjiru;Pan, Bao-Feng;Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.40 no.2
    • /
    • pp.83-87
    • /
    • 2016
  • The maritime industry is expanding at an alarming rate hence there is a perpetual need to improve situation awareness in the maritime environment using new and emerging technology. Tracking is one of the numerous ways of enhancing situation awareness by providing information that may be useful to the operator. The tracking module designed herein comprises determining existing states of high dynamic target warship, state prediction and state compensation due to random noise. This is achieved by first analyzing the process of tracking followed by design of a tracking algorithm that uses ${\alpha}-{\beta}-{\gamma}$ tracking filter under a random noise. The algorithm involves initializing the state parameters which include position, velocity, acceleration and the course. This is then followed by state prediction at each time interval. A weighted difference of the observed and predicted state values at the $n^{th}$ observation is added to the predicted state to obtain the smoothed (filtered) state. This estimation is subsequently employed to determine the predicted state in the next radar scan. The filtering coefficients ${\alpha}$, ${\beta}$ and ${\gamma}$ are determined from a pre-determined value of the damping parameter, ${\xi}$. The smoothed, predicted and the observed positions are used to compute the twice distance root mean square (2drms) error as a measure of the ability of the tracking module to manage the noise to acceptable levels.