• Title/Summary/Keyword: Estimation error

Search Result 4,228, Processing Time 0.037 seconds

Effect of Mutual Interference and Channel Estimation Error on Outage Performance of Reactive Relay Selection in Unlicensed Systems

  • Ho-Van, Khuong
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.362-369
    • /
    • 2015
  • This study addresses the effects of channel estimation error and mutual interference between licensed and unlicensed systems on outage performance of reactive relay selection in unlicensed systems over independent non-identical (i.n.i) Rayleigh fading channels and under both the maximum transmit power constraint and primary outage constraint. Toward this end, power allocation for unlicensed users is first recommended to satisfy both constraints and account for channel estimation error and mutual interference. Then, we derive an exact closed-form outage probability representation for unlicensed systems to quickly evaluate this effect in key operation parameters. Various results corroborate the derived expressions and provide useful insights into system performance.

Angle Estimation Error Reduction Method Using Weighted IMM (Weighted IMM 기법을 사용한 각도 추정 오차 감소 기법)

  • Choi, Seonghee;Song, Taeklyul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.84-92
    • /
    • 2015
  • This paper proposes a new approach to reduce the target estimation error of the measurement angle, especially applied to the medium and long range surveillance radar. If the target has no maneuver and no change in heading direction for a certain time interval, the predicted angle of interacting multiple model(IMM) from the previous track information can be used to reduce the angle estimation error. The proposed method is simulated in 2 scenarios, a scenario with a non-maneuvering target and a scenario with a maneuvering target. The result shows that the new fusion solution(weighted IMM) with the predicted azimuth and the measured azimuth is worked properly in the two scenarios.

Extended Kalman Filter Based GF-INS Angular Velocity Estimation Algorithm

  • Kim, Heyone;Lee, Junhak;Oh, Sang Heon;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.3
    • /
    • pp.107-117
    • /
    • 2019
  • When a vehicle moves with a high rotation rate, it is not easy to measure the angular velocity using an off-the-shelf gyroscope. If the angular velocity is estimated using the extended Kalman filter in the gyro-free inertial navigation system, the effect of the accelerometer error and initial angular velocity error can be reduced. In this paper, in order to improve the navigation performance of the gyro-free inertial navigation system, an angular velocity estimation method is proposed based on an extended Kalman filter with an accelerometer random bias error model. In order to show the validity of the proposed estimation method, angular velocities and navigation outputs of a vehicle with 3 rev/s rotation rate are estimated. The results are compared with estimates by other methods such as the integration and an extended Kalman filter without an accelerometer random bias error model. The proposed method gives better estimation results than other methods.

The Automatic Mesh Refinement of FEM and Posteriori Error Estimation (유한요소의 자동 재분할과 사후오차평가)

  • Kim, B. I.;Bai, S. H.;Chang, C. D.
    • Journal of Korean Port Research
    • /
    • v.10 no.2
    • /
    • pp.61-68
    • /
    • 1996
  • The main problems in structural analysis by Finite Eelement Method are difficulty in making data file and error estimation. For decreasing these problems' pays. have been suggesting the adaptive mesh refinement and error estimation method. Posteriory error estimation methods suggested by Jang[1], Babuska[2,3], Ohtsubo[8,9], and this paper. Comparing these methods and examine their properties. According this paper, In the problem supposed having singularity, the method suggested by this paper is good, But the problem supposed having no singularity, the method suggested by Jang[1] is good. For decreasing the effect of initial mesh in p-refinement, make application h-refinement at first and apply p-refinement, and confine polynomial's degree to two, for making program simply by plural mesh models are not needed.

  • PDF

A Variable Step Size LMS Algorithm Using Normalized Absolute Estimation Error

  • Kim, D. W.;S. H. Han;H. K. Hong;H. B. Kang;Park, J. S.
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.119-124
    • /
    • 1996
  • Variable step size LMS(VS-LMS) algorithms improve performance of LMS algorithm by means of varying the step size. This paper presents a new VS-LMS algorithm using normalized absolute estimation error. Normalizing the estimation error to the expected valus of the desired signal, we determined the step size using the relative size of estimation error, Because parameters and computational load are less, our algorithm is easy to implement in hardware. The performance of the proposed algorithm is analyzed theoretically and estimated through simulations. Based on the theoretical analysis and computer simulations, the proposed algorithm is shown to be effective compared to conventional VS-LMS algorithms.

  • PDF

Adaptive Kernel Estimation for Learning Algorithms based on Euclidean Distance between Error Distributions (오차분포 유클리드 거리 기반 학습법의 커널 사이즈 적응)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.561-566
    • /
    • 2021
  • The optimum kernel size for error-distribution estimation with given error samples cannot be used in the weight adjustment of minimum Euclidean distance between error distributions (MED) algorithms. In this paper, a new adaptive kernel estimation method for convergence enhancement of MED algorithms is proposed. The proposed method uses the average rate of change in error power with respect to a small interval of the kernel width for weight adjustment of the MED learning algorithm. The proposed kernel adjustment method is applied to experiments in communication channel compensation, and performance improvement is demonstrated. Unlike the conventional method yielding a very small kernel calculated through optimum estimation of error distribution, the proposed method converges to an appropriate kernel size for weight adjustment of the MED algorithm. The experimental results confirm that the proposed kernel estimation method for MED can be considered a method that can solve the sensitivity problem from choosing an appropriate kernel size for the MED algorithm.

A Robust MRAC-based Speed Estimation Method to Improve the Performance of Sensorless Induction Motor Drive System in Low Speed (저속영역에서 센서리스 벡터제어 유도전동기의 성능을 향상시키기 위한 MRAC 기반의 강인한 속도 추정 기법)

  • 박철우;권우현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.37-46
    • /
    • 2004
  • A novel rotor speed estimation method using model reference adaptive control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed method, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estimation error is unclear. In the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation. The robustness of the rotor flux-based MRAC, back EMF-based MRAC, and proposed MRAC is compared based on a sensitivity function about each error of stator resistance, rotor time constant, mutual inductance. Consequently, the proposed method is much more robust than the conventional methods as regards errors in the mutual inductance, stator resistance. Therefore, the proposed method offers a considerable improvement in the performance of a sensorless vector controller at a low speed. In addition, the superiority of the proposed method and the validity of sensitivity functions were verified by simulation and experiment.

New Filtering Method for Reducing Registration Error of Distributed Sensors (분산된 센서들의 Registration 오차를 줄이기 위한 새로운 필터링 방법)

  • Kim, Yong-Shik;Lee, Jae-Hoon;Do, Hyun-Min;Kim, Bong-Keun;Tanikawa, Tamio;Ohba, Kohtaro;Lee, Ghang;Yun, Seok-Heon
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.176-185
    • /
    • 2008
  • In this paper, new filtering method for sensor registration is provided to estimate and correct error of registration parameters in multiple sensor environments. Sensor registration is based on filtering method to estimate registration parameters in multiple sensor environments. Accuracy of sensor registration can increase performance of data fusion method selected. Due to various error sources, the sensor registration has registration errors recognized as multiple objects even though multiple sensors are tracking one object. In order to estimate the error parameter, new nonlinear information filtering method is developed using minimum mean square error estimation. Instead of linearization of nonlinear function like an extended Kalman filter, information estimation through unscented prediction is used. The proposed method enables to reduce estimation error without a computation of the Jacobian matrix in case that measurement dimension is large. A computer simulation is carried out to evaluate the proposed filtering method with an extended Kalman filter.

  • PDF

An Extended Kalman Filter Robust to Linearization Error (선형화 오차에 강인한 확장칼만필터)

  • Hong, Hyun-Su;Lee, Jang-Gyu;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2006
  • In this paper, a new-type Extended Kalman Filter (EKF) is proposed as a robust nonlinear filter for a stochastic nonlinear system. The original EKF is widely used for various nonlinear system applications. But it is fragile to its estimation errors because they give rise to linearization errors that affect the system mode1 as the modeling errors. The linearization errors are nonlinear functions of the estimation errors therefore it is very difficult to obtain the accurate error covariance of the EKF using the linear form. The inaccurately estimated error covariance hinders the EKF from being a sub-optimal estimator. The proposed filter tries to obtain the upper bound of the error covariance tolerating the uncertainty of the error covariance instead of trying to obtain the accurate one. It treats the linearization errors as uncertain modeling errors that can be handled by the robust linear filtering. In order to be more robust to the estimation errors than the original EKF, the proposed filter minimizes the upper bound like the robust linear filter that is applied to the linear model with uncertainty. The in-flight alignment problem of the inertial navigation system with GPS position measurements is a good example that the proposed robust filter is applicable to. The simulation results show the efficiency of the proposed filter in the robustness to initial estimation errors of the filter.

Effect of Channel Estimation Error on Capacity of MIMO Systems (MIMO 시스템의 채널 용량에 대한 채널 추정 오차의 영향 분석)

  • 함재상;심세준;이충용;박현철;홍대식
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.63-68
    • /
    • 2004
  • The capacity of MIMO systems is numerically analyzed when channel estimation error exists. The analysis shows that the capacity is influenced by Mean Square Error (MSE) as well as average Signal to Noise Ratio (SNR). Furthermore, in this paper we present the standard selecting a channel estimator suitable to a system owing to get a tolerable channel estimation error in a given average SNR and channel capacity loss. The simulation results show that the tolerable MSEs for 1 bps/Hz capacity loss are about 10$^{-2}$ and 10$^{-4}$ at n dB and 40 dB average SNR, respectively.