• 제목/요약/키워드: Estimation algorithm

검색결과 5,177건 처리시간 0.032초

도시부 경로자료를 이용한 통행의 공간적 규칙성 분석 (Analysis of Spatial Trip Regularity using Trajectory Data in Urban Areas)

  • 이수진;장기태
    • 한국ITS학회 논문지
    • /
    • 제17권6호
    • /
    • pp.96-110
    • /
    • 2018
  • 최근 정보통신기술의 발달로 다양한 통행 정보 수집이 용이해지면서, 신규 교통정보 생성에 대한 연구가 주목받고 있다. 그 중 수요 및 교통량에 대한 추정 및 예측은 교통 운영에 필수적인 주요 지표 중 하나로, 특정 지점 혹은 구간의 통행 패턴이 반복됨을 전제로 한다. 기존에는 이러한 통행 규칙성을 증명하기 위해 설문 방식을 사용하였으나, 해당 방식은 높은 비용과 응답자 기억에 의존하는 응답으로 높은 정확도를 확보하기에는 한계가 있었다. 최근 ETC시스템, 스마트카드 등의 방법으로 통행데이터 수집이 용이해지면서, 다양한 시각에서 통행 규칙성을 규명하고자 하는 연구가 진행되고 있다. 본 연구에서는 대구광역시의 대규모 경로형 데이터를 분석하여 개별통행자가 여러 날에 걸쳐 공간적으로 유사한 통행사슬을 형성하는 것을 확인하였다. 이를 위하여 공간적 통행 유사성을 새롭게 정의하며, 서열정렬 알고리즘인 Dynamic Time Warping을 이용하여 일별 통행사슬 간 공간적 차이를 산정한다. 또한 산출된 공간적 통행 규칙성을 통해 고정적 교통수요 추정의 지표 및 교통서비스로의 활용방안을 논 하고자 한다.

최적 염소 소독 모형의 개발 및 파라미터 연구 (Development of Optimal Chlorination Model and Parameter Studies)

  • 김준현;안수영;박민우
    • 환경영향평가
    • /
    • 제29권6호
    • /
    • pp.403-413
    • /
    • 2020
  • 최적의 염소 소독 전략을 구축하기 위해 8개의 연립 준선형 편미분방정식으로 구성된 수학적 모형이 제안되었다. 다차원 수치 프로그램을 개발하기 위해 상류 가중 유한요소법을 사용하였다. 프로그램은 세 가지 유형의 반응기에서 측정된 농도에 대해 검증되었다. 16개의 실험 결과에 대해 경계 조건 및 반응 속도를 보정하여 측정된 값을 재생시켰다. 모델링 결과로부터 8개의 반응 속도계수가 추정되었다. 반응 속도계수는 pH 및 온도로 표현되었다. 반응 속도계수를 추정하기 위해 수치 오차의 제곱의 합을 최소화하는 자동 최적 알고리즘의 프로그램을 개발하고 모형에 결합하였다. 최종 사용지에서 염소 및 오염물의 농도를 최소화하기 위해서는 정수장의 염소소독공정으로부터 최종 사용지까지의 수질 변화를 모형에 의해 예측하고 이를 기반으로 유입수 수질에 따라 염소소독공정을 운영하는 실시간 예측 제어 시스템이 필요하다. 본 모형을 이용하여 정수장에 이러한 시스템을 구축할 수 있을 것이다.

스마트 글래스를 활용한 동공 데이터 수집과 사회 감성 추정 기술 (Pupil Data Measurement and Social Emotion Inference Technology by using Smart Glasses)

  • 이동원;문성철;박상인;김환진;황민철
    • 방송공학회논문지
    • /
    • 제25권6호
    • /
    • pp.973-979
    • /
    • 2020
  • 본 연구에서는 동공 반응 데이터를 수집하여 공감의 사회 감성을 객관적이고 정량적으로 추정하는 데 목적이 있다. 52명(남 26명, 여 26명)의 피험자가 실험에 참여하였다. 실험은 30초의 참조 데이터 측정 후, 공감 유무에 따라 얼굴 표정 모방 과제와 자발적 표현과제로 구분되어 두 사람은 상호작용하였고 동공을 촬영하였다. 이진화 및 원형 윤곽선 검출법의 영상처리를 활용하여 동공 데이터를 수집하였고, 이상 데이터 제거 기법을 활용해 눈 깜빡임 노이즈를 제거하였다. 공감 유무에 따른 동공 크기 데이터는 정규성 검증 및 독립표본 t 검정을 통해 통계적 유의성을 확인하였다. 분석 결과, 공감하는 경우(M ± SD = 0.050 ± 1.817)와 공감하지 않은 경우(M ± SD = 1.659 ± 1.514) 동공 크기가 통계적으로 유의미한 차이를 보였다(t(92) = -4.629, p = 0.000). 판별분석을 통해 동공 크기에 따른 공감 유무를 추정하는 규칙을 정의하였고, 새로운 실험참가자 12명(남 6명, 여 6명, M ± SD = 22.84 ± 1.57세)을 대상으로 규칙을 검증(추정 정확도 75%)하였다. 본 연구에서 제안한 동공 크기 데이터를 이용한 공감의 사회 감성 추정 기술은 비접촉식 카메라 기반의 기술로 스마트 글래스와 접목되어 다양한 가상 현실 분야에 활용도가 높을 것으로 기대된다.

딥러닝 모델과 Kinect 카메라를 이용한 실시간 관절 애니메이션 제작 및 표출 시스템 구축에 관한 연구 (Real-Time Joint Animation Production and Expression System using Deep Learning Model and Kinect Camera)

  • 김상준;이유진;박구만
    • 방송공학회논문지
    • /
    • 제26권3호
    • /
    • pp.269-282
    • /
    • 2021
  • 증강현실과 가상현실 같은 3차원 콘텐츠 보급이 증가함에 따라 실시간 컴퓨터 애니메이션 기술의 중요성이 높아지고 있다. 하지만 컴퓨터 애니메이션 제작 과정은 대부분 수작업 혹은 마커를 부착하는 모션캡쳐 방식으로 이루어져 있다. 때문에 사실적인 영상을 얻기 위해서는 숙련된 전문가에게도 매우 오랜 시간이 필요하다. 이러한 문제점을 해결하기 위해 최근에는 딥러닝 모델과 센서를 기반으로 하는 애니메이션 제작 시스템과 알고리즘이 나오고 있다. 이에 본 논문에서는 딥러닝과 Kinect 카메라 기반 FBX 형식의 애니메이션 제작 시스템에서 자연스러운 인체 움직임을 구현하는 4가지 방법에 대해 연구했다. 각 방법은 환경적 특성과 정확도를 고려하여 선택된다. 첫 번째 방법은 Kinect 카메라를 사용한다. 두 번째 방법은 Kinect 카메라와 보정 알고리즘을 사용한다. 세 번째 방법은 딥러닝 모델을 사용한다. 네 번째 방법은 딥러닝 모델과 Kinect를 사용한다. 제안 방법을 오차와 처리 속도를 실험한 결과, 네 번째 딥러닝 모델과 Kinect를 동시에 사용하는 방법이 다른 방법에 비해 가장 좋은 결과를 보였다.

Dantzig 위험을 사용한 포트폴리오 최적화 선형계획법 모형 (Linear programming models using a Dantzig type risk for portfolio optimization)

  • 안다영;박세영
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.229-250
    • /
    • 2022
  • 포트폴리오 최적화 이론의 초석인 Markowitz의 평균-분산 포트폴리오 모형 (1952)이 발표된 이후로 많은 분야에서 포트폴리오 최적화에 대한 다양한 연구가 진행되었다. 기존의 평균-분산 포트폴리오 모형은 주로 목적함수나 제약식에 비선형 볼록 형태를 포함한다. 이를 Dantzig의 선형계획법을 적용하여 선형으로 변환시켜 알고리즘 계산 시간을 효율적으로 감소시켰다. 또한 시계열 데이터 특성을 반영하여 시간에 따른 가중치를 고려하는 가우시안 커널 가중치 공분산을 제안하였다. 여기에 일정 부분은 벤치마크에 투자하고 나머지는 포트폴리오 최적화 모형으로 제안된 자산들에 투자하는 퍼터베이션 방법을 적용하여 평균 수익률과 위험도를 목적에 맞게 조절하도록 하였다. 또한, 본 논문에서는 안정적이면서도 적은 자산을 보유하게 포트폴리오를 구성하여 관리비용(management costs)과 거래비용(transaction costs)를 낮출 수 있는 Dantzig-type 퍼터베이션 포트폴리오 모형을 제안하였다. 제안된 모형의 성능은 5개의 실제 데이터 세트로 벤치마크 포트폴리오와 비교 분석하여 평가하였다. 최종적으로 제안한 최적화 모형은 벤치마크보다 높은 기대수익률이나 낮은 위험도를 갖는 포트폴리오를 구성하여 퍼터베이션 목적을 만족하며, 투자한 자산의 수와 시간에 따른 자산 구성 변화를 일정 수준 이하로 조절하는 희소하며 안정적인 결과를 얻었다.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

딥러닝 기반 국내 지반의 지지층 깊이 예측 (Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data)

  • 장영은;정재호;한진태;유용균
    • 한국지반공학회논문집
    • /
    • 제38권3호
    • /
    • pp.35-42
    • /
    • 2022
  • 지반조사방법 중 표준관입시험 결과인 N치를 통해 알 수 있는 지반 지지층의 깊이는 각종 지반 구조물의 설계를 위한 기본적인 지반 정보를 제공하는 중요한 지표이다. 이러한 지반조사 결과는 시간과 비용 측면을 고려해 간헐적으로 수행될 수밖에 없으며, 그 결과는 현장 지반의 대표성을 갖게 된다. 그러나 지반 내에는 다양한 지층 변동성 및 불확실성이 존재하므로 간헐적인 현장조사를 통해 지반의 특성을 모두 파악하는 것은 어렵다. 따라서 시추공 정보로부터 미계측 지점을 예측하기 위한 방법들이 제시되어 왔으며, 대표적인 방법으로는 공간보간기법인 크리깅(Krigging), 역거리가중법(IDW)등이 있다. 최근에는 보간기법의 정확성을 높이기 위해 지반분야와 딥러닝 기술을 접목한 연구들이 수행되고 있다. 본 연구에서는 약 2만 2천공의 지반조사 결과를 바탕으로 딥러닝과 공간보간기법으로 지반 지지층 깊이 예측을 위한 비교 연구를 수행하였다. 이를 위해 딥러닝 알고리즘인 완전연결 네트워크와 포인트넷 방법, 공간보간기법으로는 IDW를 사용하였다. 각 분석 모델의 지지층 예측 결과 중 오차의 평균은 IDW가 3.01m 였으며, 완전연결 네트워크 및 포인트넷이 각 3.22m와 2.46m 였다. 결과의 표준편차는 IDW가 3.99였으며, 완전연결네트워크와 포인트넷이 3.95와 3.54로 나타났다. 연구 결과 3차원 정보에 특화된 포인트넷 구조를 적용한 네트워크가 IDW 및 완전연결 네트워크에 비해 개선된 결과를 나타냈다.

딥러닝 알고리즘을 이용한 강우 발생시의 유량 추정에 관한 연구 (A study on discharge estimation for the event using a deep learning algorithm)

  • 송철민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.246-246
    • /
    • 2021
  • 본 연구는 강우 발생시 유량을 추정하는 것에 목적이 있다. 이를 위해 본 연구는 선행연구의 모형 개발방법론에서 벗어나 딥러닝 알고리즘 중 하나인 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 유량을 추정하였다. 합성곱 신경망은 일반적으로 분류 문제 (classification)을 해결하기 위한 목적으로 개발되었기 때문에 불특정 연속변수인 유량을 모의하기에는 적합하지 않다. 이를 위해 본 연구에서는 합성곱 신경망의 완전 연결층 (Fully connected layer)를 개선하여 연속변수를 모의할 수 있도록 개선하였다. 대부분 합성곱 신경망은 RGB (red, green, blue) 사진 (photograph)을 이용하여 해당 사진이 나타내는 것을 예측하는 목적으로 사용하지만, 본 연구의 경우 일반 RGB 사진을 이용하여 유출량을 예측하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이를 위해 본 연구에서는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는 수문학적 이미지는 입력자료로 활용했다. 합성곱 신경망의 구조는 Convolution Layer와 Pulling Layer가 5회 반복하는 구조로 설정하고, 이후 Flatten Layer, 2개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 다시 1개의 Dense Layer가 이어지는 구조로 설계하였다. 마지막 Dense Layer의 활성화 함수는 분류모형에 이용되는 softmax 또는 sigmoid 함수를 대신하여 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 이와 함께 각 층의 활성화 함수는 정규화 선형함수 (ReLu)를 이용하였으며, 모형의 학습 평가 및 검정을 판단하기 위해 MSE 및 MAE를 사용했다. 또한, 모형평가는 NSE와 RMSE를 이용하였다. 그 결과, 모형의 학습 평가에 대한 MSE는 11.629.8 m3/s에서 118.6 m3/s로, MAE는 25.4 m3/s에서 4.7 m3/s로 감소하였으며, 모형의 검정에 대한 MSE는 1,997.9 m3/s에서 527.9 m3/s로, MAE는 21.5 m3/s에서 9.4 m3/s로 감소한 것으로 나타났다. 또한, 모형평가를 위한 NSE는 0.7, RMSE는 27.0 m3/s로 나타나, 본 연구의 모형은 양호(moderate)한 것으로 판단하였다. 이에, 본 연구를 통해 제시된 방법론에 기반을 두어 CNN 모형 구조의 확장과 수문학적 이미지의 개선 또는 새로운 이미지 개발 등을 추진할 경우 모형의 예측 성능이 향상될 수 있는 여지가 있으며, 원격탐사 분야나, 위성 영상을 이용한 전 지구적 또는 광역 단위의 실시간 유량 모의 분야 등으로의 응용이 가능할 것으로 기대된다.

  • PDF

Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process

  • Qi-Ang Wang;Hao-Bo Wang;Zhan-Guo Ma;Yi-Qing Ni;Zhi-Jun Liu;Jian Jiang;Rui Sun;Hao-Wei Zhu
    • Smart Structures and Systems
    • /
    • 제32권4호
    • /
    • pp.267-279
    • /
    • 2023
  • Data modelling and interpretation for structural health monitoring (SHM) field data are critical for evaluating structural performance and quantifying the vulnerability of infrastructure systems. In order to improve the data modelling accuracy, and extend the application range from data regression analysis to out-of-sample forecasting analysis, an improved most likely heteroscedastic Gaussian process (iMLHGP) methodology is proposed in this study by the incorporation of the outof-sample forecasting algorithm. The proposed iMLHGP method overcomes this limitation of constant variance of Gaussian process (GP), and can be used for estimating non-stationary typhoon-induced response statistics with high volatility. The first attempt at performing data regression and forecasting analysis on structural responses using the proposed iMLHGP method has been presented by applying it to real-world filed SHM data from an instrumented cable-stay bridge during typhoon events. Uncertainty quantification and correlation analysis were also carried out to investigate the influence of typhoons on bridge strain data. Results show that the iMLHGP method has high accuracy in both regression and out-of-sample forecasting. The iMLHGP framework takes both data heteroscedasticity and accurate analytical processing of noise variance (replace with a point estimation on the most likely value) into account to avoid the intensive computational effort. According to uncertainty quantification and correlation analysis results, the uncertainties of strain measurements are affected by both traffic and wind speed. The overall change of bridge strain is affected by temperature, and the local fluctuation is greatly affected by wind speed in typhoon conditions.

IoT 및 도메인 지식 기반 교량 케이블 모니터링 자동화 시스템 구축 연구 (Development of Autonomous Cable Monitoring System of Bridge based on IoT and Domain Knowledge)

  • 민지영;박영수;박태림;길윤섭;진승섭
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권3호
    • /
    • pp.66-73
    • /
    • 2024
  • 사장교에서 케이블 부재는 하중을 전달하는 가장 중요한 부재 중 하나이다. 따라서 사장교의 구조적 상태 및 안정성을 평가하기 위해서는 케이블의 상태를 파악하기 위해 지속적인 모니터링을 수행하는 것이 중요하다. 이러한 모니터링 시스템은 케이블에 부착된 가속도계를 통해 진동을 측정하고 이를 토대로 케이블 장력과 감쇠비를 추정하고, 이를 토대로 케이블의 상태 평가의 기초자료로 활용한다. 이러한 상시 모니터링 시스템은 지속적으로 진동 데이터를 측정하기 때문에 데이터 수집 시스템을 포함한 하드웨어가 안정적이고 전력 효율성이 높아야 한다. 또한 지속적으로 생성되는 대량의 진동 신호들을 사람의 개입을 최소화하며 안정적으로 분석할 수 있는 자율모니터링 시스템이 요구된다. 본 연구에서는 IoT를 활용한 도메인 지식 기반 자율 모니터링 시스템을 개발하였다. 케이블 자율 모니터링 시스템을 구현하기 위한 가장 중요한 요소는 케이블의 장력과 감쇠비의 추정을 위한 진동 신호의 주파수 영역 내 발생하는 첨두의 자동 추정이다. 본 연구에서는 도메인 지식 기반 첨두 자동 추정 알고리즘을 데이터 수집 및 On-Board Processing이 가능한 IoT 시스템에 내장하여 IoT 센서 단에서 Edge computing이 가능한 효율적인 IoT 자율 모니터링 시스템을 구현하였다. 개발된 자율 모니터링 시스템을 국내 사장교에 설치하여 장기간 현장 운영 성능을 평가하였으며, 그 결과 장기 데이터 수신률, 장력 추정의 정확성, 효율성 측면에서 기존 시스템과 비교하여 작동 성능을 확인하고 검증하였다.