• Title/Summary/Keyword: Estimating variability

Search Result 115, Processing Time 0.02 seconds

Comparison of Methods for Estimating Extreme Significant Wave Height Using Satellite Altimeter and Ieodo Ocean Research Station Data (인공위성 고도계와 이어도 해양과학기지 관측 자료를 활용한 유의파고 극값 추정 기법 비교)

  • Woo, Hye-Jin;Park, Kyung-Ae;Byun, Do-Seung;Jeong, Kwang-Yeong;Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.524-535
    • /
    • 2021
  • Rapid climate change and oceanic warming have increased the variability of oceanic wave heights over the past several decades. In addition, the extreme wave heights, such as the upper 1% (or 5%) wave heights, have increased more than the heights of the normal waves. This is true for waves both in global oceans as well as in local seas. Satellite altimeters have consistently observed significant wave heights (SWHs) since 1991, and sufficient SWH data have been accumulated to investigate 100-year return period SWH values based on statistical approaches. Satellite altimeter data were used to estimate the extreme SWHs at the Ieodo Ocean Research Station (IORS) for the period from 2005 to 2016. Two representative extreme value analysis (EVA) methods, the Initial Distribution Method (IDM) and Peak over Threshold (PoT) analysis, were applied for SWH measurements from satellite altimeter data and compared with the in situ measurements observed at the IORS. The 100-year return period SWH values estimated by IDM and PoT analysis using IORS measurements were 8.17 and 14.11 m, respectively, and those using satellite altimeter data were 9.21 and 16.49 m, respectively. When compared with the maximum value, the IDM method tended to underestimate the extreme SWH. This result suggests that the extreme SWHs could be reasonably estimated by the PoT method better than by the IDM method. The superiority of the PoT method was supported by the results of the in situ measurements at the IORS, which is affected by typhoons with extreme SWH events. It was also confirmed that the stability of the extreme SWH estimated using the PoT method may decline with a decrease in the quantity of the altimeter data used. Furthermore, this study discusses potential limitations in estimating extreme SWHs using satellite altimeter data, and emphasizes the importance of SWH measurements from the IORS as reference data in the East China Sea to verify satellite altimeter data.

Study on the Possibility of Estimating Surface Soil Moisture Using Sentinel-1 SAR Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 Sentinel-1 SAR 위성영상을 이용한 지표 토양수분량 산정 가능성에 관한 연구)

  • Younghyun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.229-241
    • /
    • 2024
  • With the advancement of big data processing technology using cloud platforms, access, processing, and analysis of large-volume data such as satellite imagery have recently been significantly improved. In this study, the Change Detection Method, a relatively simple technique for retrieving soil moisture, was applied to the backscattering coefficient values of pre-processed Sentinel-1 synthetic aperture radar (SAR) satellite imagery product based on Google Earth Engine (GEE), one of those platforms, to estimate the surface soil moisture for six observatories within the Yongdam Dam watershed in South Korea for the period of 2015 to 2023, as well as the watershed average. Subsequently, a correlation analysis was conducted between the estimated values and actual measurements, along with an examination of the applicability of GEE. The results revealed that the surface soil moisture estimated for small areas within the soil moisture observatories of the watershed exhibited low correlations ranging from 0.1 to 0.3 for both VH and VV polarizations, likely due to the inherent measurement accuracy of the SAR satellite imagery and variations in data characteristics. However, the surface soil moisture average, which was derived by extracting the average SAR backscattering coefficient values for the entire watershed area and applying moving averages to mitigate data uncertainties and variability, exhibited significantly improved results at the level of 0.5. The results obtained from estimating soil moisture using GEE demonstrate its utility despite limitations in directly conducting desired analyses due to preprocessed SAR data. However, the efficient processing of extensive satellite imagery data allows for the estimation and evaluation of soil moisture over broad ranges, such as long-term watershed averages. This highlights the effectiveness of GEE in handling vast satellite imagery datasets to assess soil moisture. Based on this, it is anticipated that GEE can be effectively utilized to assess long-term variations of soil moisture average in major dam watersheds, in conjunction with soil moisture observation data from various locations across the country in the future.

Estimation of Family Variation and Genetic Parameter for Growth Traits of Pacific Abalone, Haliotis discus hannai on the 3th Generation of Selection (선발 3세대 북방전복의 성장형질에 대한 가계변이 및 유전모수 추정)

  • Park, Jong-Won;Park, Choul-Ji;Lee, Jeong-Ho;Noh, Jae-Koo;Kim, Hyun-Chul;Hwang, In-Joon;Kim, Sung-Yeon
    • The Korean Journal of Malacology
    • /
    • v.29 no.4
    • /
    • pp.325-334
    • /
    • 2013
  • The purpose of this paper is to compare and analyze family variations for growth-related traits of Pacific abalone, Haliotis discus hannai. Genetic parameters and breeding values were estimated using all measurement data like shell length, shell width, and total weight as 18-month-old growth traits of 5,334 individuals of selected third generation's Pacific abalone produced in 2011. Family variations of 865 individuals of the upper 10 families with the largest number were inspected. Overall mean in phenotypic traits of 18-month-old Pacific abalone which was investigated in this study showed 54.5 mm of shell length, 36.8 mm of shell width and 21.3 g of total weight respectively. And, variation coefficient of total weight was 51.0%, so variability of data was shown to be higher than 21.1% of shell length and 20.7% of shell width. The family effects showed significant difference by each family (p < 0.05), and heritability of shell length, shell width, and total weight was medium with 0.370, 0.382, and 0.367 respectively. So it is considered that family selection is more advantageous than individual selection. On the basis of breeding values of estimated shell length and total weight, to investigate distribution and ranking by each individual about the upper 10 families with the largest number of individuals, the values were used by being changed into standardized breeding values. Based on shell length, it was investigated that the individual number of the upper 5.4% is 152 and the number of the lower 5.4% is 8. In case of total weight, it was inspected that the individual number of the upper 5.4% is 164 and the number of the lower 5.4% is 1. Like these, phenotypic and genetic diverse variations between families could be checked. By estimating genetic parameters and breeding values of a population for production of the next generation, if they are used properly in selection and mating, it is considered that more breeding effects can be expected.

Improvement of Mid-and Low-flow Estimation Using Variable Nonlinear Catchment Wetness Index (비선형 유역습윤지수를 이용한 평갈수기 유출모의개선)

  • Hyun, Sukhoon;Kang, Boosik;Kim, Jin-Gyeom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.779-789
    • /
    • 2016
  • The effective rainfall is calculated considering the soil moisture. It utilizes observed data directly in order to incorporate the soil moisture into the rainfall-runoff model, or it calculates indirectly within the model. The rainfall-runoff model, IHACRES, used in this study computes the catchment wetness index (CWI) first varying with temperature and utilize it for estimating precipitation loss. The nonlinear relationship between the CWI and the effective rainfall in the Hapcheondam watershed was derived and utilized for the long-term runoff calculation. The effects of variable and constant CWI during calibration and validation were suggested by flow regime. The results show the variable CWI is generally more effective than the constant CWI. The $R^2$ during high flow period shows relatively higher than the ones during normal or low flow period, but the difference between cases of the variable and constant CWI was insignificant. The results indicates that the high flow is relatively less sensitive to the evaporation and soil moisture associated with temperature. On the other hand, the variable CWI gives more desirable results during normal and low flow periods which means that it is crucial to incorporate evaporation and soil moisture depending on temperature into long-term continuous runoff simulation. The NSE tends to decrease during high flow period with high variability which could be natural because NSE index is largely influenced by outliers of underlying variable. Nevertheless overall NSE shows satisfactory range higher than 0.9. The utilization of variable CWI during normal and low flow period would improve the computation of long-term rainfall-runoff simulation.

Polymorphism of Salmonella Strains Using Arbitrary-Primed Polymerase Chain Reaction (Arbitrary-Primed PCR 기법을 이용한 Salmonella 균의 다형성 분석)

  • Hwang, Eui-Kyung;Kim, Sang-Kyun;Kim, Yeon-Soo;Kim, Woo-Tea;Lee, Jeong-Koo
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.2
    • /
    • pp.191-199
    • /
    • 2002
  • In this study, eight primers were used to detect genetic variability and phylogenetic relationships among the eighteen Salmonella strains by the arbitrary-primed PCR(AP-PCR) techniques. Five strains of Salmonella typhimurium, four strains of S entertidis, three strains of S choleraeuis, three strains of S gallinarum and three strains of S pullorum were typed by AP-PCR. The number of AP-PCR bands detected per each primer varied from 39 to 52, with an average of 43.6. A total of 349 AP-PCR bands were generated and among them, 185 bands(53.0%) were polymorphic. Among the primers, GEN 703 and GEN 708 primer showed a high level of polymorphism with 0.682 and 0.676, respectively. But GEN 603, GEN 604 and GEN 607 primer showed a low level of polymorphism with 0.404, 0.460 and 0.472, respectively. Therefore, the these primers will be the most effective for AP-PCR analysis of Salmonella strains. The level of polymorphism of S typhimurium CU 2001(0.77) was similar to that of S typhimurium CU 2002(0.77) and lower than those of other strains such as S typhimurium CU 2003(0.63), S typhimurium ATCC 14028(0.50) and S typhimurium CU 2004(0.43). The level of polymorphism of S enteritidis ATCC 13076(0.83) was similar to that of S enteritidis CU 2005(0.83) and lower than those of other strains such as S enteritidis CU 2006(0.63) and S enteritidis CU 2007(0.58). The level of polymorphism of S choleraeuis CU 2009(0.67) was similar to that of S choleraeuis CU 2010(0.67) and higher than those of other strains such as S choleraeuis CU 2008(0.53). The level of polymorphism of S gallinarum CU 2011(0.70) was similar to that of S gallinarum CU 2012(0.70) and higher than those of other strains Such as S gallinarum ATCC 9184(0.60). The level of polymorphism of S pullorum CU 2013(0.80) was similar to that of S pullorum CU 2014(0.80) and higher than those of other strains such as S pullorum No 11(0.53). Therefore, the AP-PCR analysis will be used a powerful tool for estimating genetic variation and phylogenetic relationships among Salmonella strains.