• Title/Summary/Keyword: Estimating Position

Search Result 411, Processing Time 0.034 seconds

Algorithm for Estimating Riding Position and Volition in Health-care Riding Robots (승마용 헬스케어 로봇의 승마 자세 판단 및 의지추론 알고리즘 개발에 관한 연구)

  • Park, Chang-Woo;Lim, Mee-Seub;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1733-1734
    • /
    • 2008
  • We develope a riding robot system named as "RideBot" for health-care and entertainments. An algorithm for estimating riding position and volition is proposed by using bio-signals. We analyze the riding position and volition in real-horse riding environments and build up the database. With this database and sensor informations, standard positions are made. For the volition estimation, we use the acceleration and deceleration sensor information and bridle information for direction change. We propose a hybrid control algorithm in which discrete-state and continuous-state controls are combined. The efficiency of the proposed algorithm is evaluated thru various experiments.

  • PDF

Precise Positioning Algorithm Development for Quadrotor Flying Robots Using Dual Extended Kalman Filter (듀얼 확장 칼만 필터를 이용한 쿼드로터 비행로봇 위치 정밀도 향상 알고리즘 개발)

  • Seung, Ji-Hoon;Lee, Deok-Jin;Ryu, Ji-Hyoung;Chong, Kil To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.158-163
    • /
    • 2013
  • The fusion of the GPS (Global Positioning System) and DR (Dead Reckoning) is widely used for position and latitude estimation of vehicles such as a mobile robot, aerial vehicle and marine vehicle. Among the many types of aerial vehicles, grater focus is given on the quad-rotor and accuracy of the position information is becoming more important. In order to exactly estimate the position information, we propose the fusion method of GPS and Gyroscope sensor using the DEKF (Dual Extended Kalman Filter). The DEKF has an advantage of simultaneously estimating state value and a parameter of dynamical system. It can also be used even if state value is not available. In order to analyze the performance of DEKF, the computer simulation for estimating the position, the velocity and the angle in a circle trajectory of quad-rotor was done. As it can be seen from the simulation results using own proposed DEKF instead of EKF on own fusion method in the navigation of a quad-rotor gave better performance values.

Plotting positions and approximating first two moments of order statistics for Gumbel distribution: estimating quantiles of wind speed

  • Hong, H.P.;Li, S.H.
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.371-387
    • /
    • 2014
  • Probability plotting positions are popular and used as the basis for distribution fitting and for inspecting the quality of the fit because of its simplicity. The plotting positions that lead to excellent approximation to the mean of the order statistics should be used if the objective of the fitting is to estimate quantiles. Since the mean depends on the sample size and is not amenable for simple to use closed form solution, many plotting positions have been presented in the literature, including a new plotting position that is derived based on the weighted least-squares method. In this study, the accuracy of using the new plotting position to fit the Gumbel distribution for estimating quantiles is assessed. Also, plotting positions derived by fitting the mean of the order statistics for all ranks is proposed, and an approximation to the covariance of the order statistics for the Gumbel (and Weibull) variate is given. Relative bias and root-mean-square-error of the estimated quantiles by using the proposed plotting position are shown. The use of the proposed plotting position to estimate the quantiles of annual maximum wind speed is illustrated.

Position Control of Induction Motor Using Generalized Predictive Control (일반형 예측제어을 이용한 유도전동기의 위치제어)

  • Na, Jae-Du;Kim, Sang-Uk;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.340-343
    • /
    • 1995
  • This paper consists of the position control of induction motor using Generalized Predictive Control. Full order flux observer is also used for the purpose of estimating rotor fluxes. By using Generalized Predictive Control algorithm, the improved position control is realized in this paper. The proposed control method has been implemented by a 32 bit floating point TMS320C31 DSP chip.

  • PDF

Preliminary study of time-of-flight measurement for 3D position sensing system based on acoustic signals

  • Kim, Heung-Gi;Park, Youngjin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.79.4-79
    • /
    • 2002
  • Our goal is the development of a system that estimates the location of interested point in a room with accuracy and low cost. Non-contacting position estimating method is widely used in various areas. Among these methods, acoustic signal-based method is the cheapest and provides reasonably accurate estimation as a result of many research efforts. Most of the acoustic-signal-based three-dimensional location estimators such as 3D sonic digitizer are using the ultrasound, and are organized with two procedures; time-of-flight (TOF) estimation and localization estimation. Since the errors in estimating the TOF could be accumulated with that of localization estimate, accuracy of TOF estimate is as...

  • PDF

Analysis of influence of parameter error for extended EMF based sensorless control and flux based sensorless control of PM synchronous motor (영구자석 동기전동기의 확장 역기전력 기반 센서리스 제어와 자속기반 센서리스 제어의 파라미터 오차의 영향 분석)

  • Park, Wan-Seo;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.8-15
    • /
    • 2019
  • The PM synchronous motor drives with vector control have been applied to wide fields of industry applications due to its high efficiency. The rotor position information for vector control of a PM synchronous motor is detected from the rotor position sensors or rotor position estimators. The sensorless control based on the mathematical model of PM synchronous motor is generally used and it can be classified into back EMF -based sensorless control and magnet flux-based sensorless control. The rotor position estimating performance of the back EMF-based sensorless control is deteriorated at low speeds since the magnitude of back EMF is proportional to the motor speed. The magnitude of the magnet flux for estimating rotor position in the flux-based sensorless control is independent on the motor speed so that the estimating performance is excellent for wide speed ranges. However, the estimation performance of the model-based sensorless control may be influenced by the motor parameter variation since the rotor position estimator uses the mathematical model of the PM synchronous motor. In this paper, the rotor position estimation performance for the back EMF based- and flux-based sensorless controls is analyzed theoretically and is compared through the simulation and experiment when the motor parameters including stator resistance and inductance are varied.

Optimization of Radiator Position in an Internally Radiating Photobioreactor: A Model Simulation Study

  • Suh, In-Soo;Lee, Sun-bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.789-793
    • /
    • 2003
  • This study focused on the optimization of the illumination method for efficient use of light energies in a photobioreactor. In order to investigate the effect of radiator position, a model simulation study was carried out using Synechococcus sp. PCC 6301 and an internally radiating photobioreactor as a model system. The efficiency of light transfer in a photobioreactor was analyzed by estimating the average light intensity in a photobioreactor. The simulation result, indicate that there exists an optimal position of internal radiators, and that the optimal position varies with radiator number and cell concentration. When light radiators are placed at the optimal position, the average light intensity is about 30% higher than that obtained by placing radiators at the circumstance or center of a photobioreactor. The method presented in this work may be useful for improving light transfer efficiency in a photobioreactor.

Estimation of the position and orientation of the mobile robot using camera calibration (카메라 캘리브레이션을 이용한 이동로봇의 위치 및 자세 추정)

  • 정기주;최명환;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.786-791
    • /
    • 1992
  • When a mobile robot moves from one place to another, position error occurs due to the limit of accuracy of robot and the effect of environmental noise. In this paper. an accurate method of estimating the position and orientation of a mobile robot using the camera calibration is proposed. Kalman filter is used as the estimation algorithm. The uncertainty in the position of camera with repect to robot base frame is considered well as the position error of the robot. Besides developing the mathematical model for mobile robot calibration system, the effect of relative position between camera and calibration points is analyzed and the method to select the most accurate calibration points is also presented.

  • PDF

IPMSM Sensorless Control Using Square-Wave-Type Voltage Injection Method with a Simplified Signal Processing (구형파 신호 주입을 이용한 IPMSM 센서리스 제어에서 개선된 신호처리 기법)

  • Park, Nae-Chun;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.225-231
    • /
    • 2013
  • This paper presents an improved signal processing technique in the square-wave-type voltage injection method for IPMSM sensorless drives. Since the sensorless method based on the square-wave voltage injection does not use low-pass filters to get an error signal for estimating rotor position and allows the frequency of the injected voltage signal to be high, the sensorless drive system may achieve an enhanced control bandwidth and reduced acoustic noise. However, this sensorless method still requires low-pass and band-pass filters to extract the fundamental component current and the injected frequency component current from the motor current, respectively. In this paper, these filters are replaced by simple arithmetic operations so that the time delay for estimating the rotor position can be effectively reduced to only one current sampling. Hence, the proposed technique can simplify its whole signal process for the IPMSM sensorless control using the square-wave-type voltage injection. The proposed technique is verified by the experiment on the 800W IPMSM drive system.