• Title/Summary/Keyword: Estimating Position

Search Result 411, Processing Time 0.027 seconds

Path Estimation Method in Shadow Area Using Underwater Positioning System and SVR (수중 측위 시스템과 SVR을 이용한 음영지역에서의 경로 추정 기법)

  • Park, Young Sik;Song, Jun Woo;Lee, Dong Hyuk;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.173-183
    • /
    • 2017
  • This paper proposes an integrated positioning system to localize a moving object in the shadow-area that exists in the water tank. The new water tank for underwater robots is constructed to evaluate the navigation performance of underwater vehicles. Several sensors are integrated in the water tank to provide the position information of the underwater vehicles. However there are some areas where the vehicle localization becomes very poor since the very limited sensors such as sonar and depth sensors are effective in underwater environment. Also there are many disturbances at sonar data. To reduce these disturbances, an extended Kalman filter has been adopted in this research. To localize the underwater vehicles under the hostile situations, a SVR (Support Vector Regression) has been systematically applied for estimating the position stochastically. To demonstrate the performance of the proposed algorithm (an extended Kalman filter + SVR analysis), a new UI (User Interface) has been developed.

Development of Auto-Tuning Geomagnetic Compass (자동 자기 왜곡보정 방위센서 개발)

  • Kim, Sang-Cheol;Lee, Yong-Beom;Han, Kil-Su;Im, Dong-Hyeok;Choi, Hong-Gi;Park, Woo-Pung;Lee, Woon-Yong
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.58-62
    • /
    • 2008
  • The need for position information in agriculture is gradually increasing for precise control farm vehicle and effective manage farm land. Though geomagnetic sensor has a lot of merits in estimating heading angle of vehicle because of low costs and sensing ability of magnetic north, it is easy that sensor outputs are distorted in electro magnetic field environment. This study was conducted to develop geomagnetic compass which could be available in measuring relative position from reference point correcting output distorted by external electro magnetic field in a small scale field. Magnetic inducing sensor (PNI's Vector2X) which wound enamel coated copper coil on ferrite core in order to measure and correct earth magnetic field. Magnetic azimuth was corrected using the algorithm which estimated amount of magnetic distortion from the difference between each outputs of magnetic sensors that located on the cross shaped base. Developed auto-tuning magnetic sensor was showed less then 5% as bearing accuracy in the strong magnetic field.

Moving Object Following by a Mobile Robot using a Single Curvature Trajectory and Kalman Filters (단일곡률궤적과 칼만필터를 이용한 이동로봇의 동적물체 추종)

  • Lim, Hyun-Seop;Lee, Dong-Hyuk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.599-604
    • /
    • 2013
  • Path planning of mobile robots has a purpose to design an optimal path from an initial position to a target point. Minimum driving time, minimum driving distance and minimum driving error might be considered in choosing the optimal path and are correlated to each other. In this paper, an efficient driving trajectory is planned in a real situation where a mobile robot follows a moving object. Position and distance of the moving object are obtained using a web camera, and the rotation angular and linear velocities are estimated using Kalman filters to predict the trajectory of the moving object. Finally, the mobile robot follows the moving object using a single curvature trajectory by estimating the trajectory of the moving object. Using the estimation by Kalman filters and the single curvature in the trajectory planning, the total tracking distance and time saved amounts to about 7%. The effectiveness of the proposed algorithm has been verified through real tracking experiments.

Modeling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1165-1173
    • /
    • 2001
  • This paper deals with dynamic analysis of Pipeline Inspection Gauge (PIG) flow control in natural gas pipelines. The dynamic behaviour of PIG depends on the pressure differential generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze dynamic behaviour characteristics (e.g. gas flow, the PIG position and velocity) mathematical models are derived. Tow types of nonlinear hyperbolic partial differential equations are developed for unsteady flow analysis of the PIG driving and expelled gas. Also, a non-homogeneous differential equation for dynamic analysis of the PIG is given. The nonlinear equations are solved by method of characteristics (MOC) with a regular rectangular grid under appropriate initial and boundary conditions. Runge-Kutta method is used for solving the steady flow equations to get the initial flow values and for solving the dynamic equation of the PIG. The upstream and downstream regions are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. Simulation is performed with a pipeline segment in the Korea gas corporation (KOGAS) low pressure system. Ueijungboo-Sangye line. The simulation results show that the derived mathematical models and the proposed computational scheme are effective for estimating the position and velocity of the PIG with a given operational condition of pipeline.

  • PDF

A Simulation for Robust SLAM to the Error of Heading in Towing Tank (Unscented Kalman Filter을 이용한 Simultaneous Localization and Mapping 기법 적용)

  • Hwang, A-Rom;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.339-346
    • /
    • 2006
  • Increased usage of autonomous underwater vehicle (AUV) has led to the development of alternative navigational methods that do not employ the acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small AUV. The SLAM is one of such alternative navigation methods for measuring the environment that the vehicle is passing through and providing relative position of AUV by processing the data from sonar measurements. A technique for SLAM algorithm which uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the AUV and objects. In order for the algorithm to work efficiently, the nearest neighbor standard filter is introduced as the algorithm of data association in the SLAM for associating the stored targets the sonar returns at each time step. The proposed SLAM algorithm is tested by simulations under various conditions. The results of the simulation show that the proposed SLAM algorithm is capable of estimating the position of the AUV and the object and demonstrates that the algorithm will perform well in various environments.

  • PDF

High-Speed Image Matching Method Using Geometry - Phase Information (기하 위상 정보를 이용한 고속 영상 정합 기법)

  • Chong Min-Yeong;Oh Jae-Yong;Lee Chil-Woo;Bae Ki-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.9
    • /
    • pp.1195-1207
    • /
    • 2005
  • In this paper, we describe image matching techniques which is automatically retrieving the exact matching area using geometry-phase information. We proposed a Matching Method which is rapidly estimating the correspondent points between adjacent images that included big-rotation and top-bottom movement element. It is a method that reduce computation quantity to be required to find an exact correspondent position using geometry-phase information of extracted points in images and DT map which set the distance value among feature points and other points on the basis of each feature point of a image. The proposed method shows good performance especially in the part to search a exact correspondent position between adjacent images that included big-rotation and top-bottom movement element.

  • PDF

Risk Measures and the Effectiveness of Value-at-Risk Hedging (위험측정치와 VaR헤지의 유효성)

  • Moon, Chang-Kuen;Kim, Chun-Ho
    • International Commerce and Information Review
    • /
    • v.9 no.2
    • /
    • pp.65-86
    • /
    • 2007
  • This paper reviews the properties and application methods of widely used types of risk measures, identifies the rationale and business-side effects of hedging, derives the theoretical formula of optimal hedging ratio, and analyzes the various functional aspects of VaR(Value-at-risk) as a risk measure and a hedging tool. Especially this paper focuses on the characteristics of VaR compared with other risk measures in terms of their own principal determinants and identifies its stronger aspects in the dimension of hedging strategy tools. As well, this paper provides the detailed processes deriving the optimal hedge ratios based on the distributional parameters and risk factors. In addition, this paper presents the detailed and substantial processes of estimating the minimum variance hedge ratio and minimum-VaR hedge ratio using the actual data and shows that the minimum variance hedge ratio proves helpful for many cases although it is not appropriate for the non-linear portfolio including the option contracts. We demonstrate the trade-off relationship between the minimum variance hedge strategy and the minimum-VaR hedge strategy in their hedging costs and performances through calculation of the respective VaRs and variances of unhedged and hedged portfolios and the optimal hedge ratio and hedging effectiveness values for the given long position in US Dollar with the short position in Euro.

  • PDF

Modelling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Yoo, Hui-Ryong;Park, Yong-Woo;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.448-448
    • /
    • 2000
  • This paper deals with dynamic behaviour analysis for pipeline inspection gauge (PIG) flow control in natural gas pipeline. The dynamic behaviour of the PIG is depending on the different Pressure between the rear and nose parts, which is generated by injected gas flow behind PIG's tail and expelled gas flow in front of its nose. To analyze the dynamic behaviour characteristics such as gas flow in pipeline, and the PIG's position and velocity, mathematical model is derived as two types of a nonlinear hyperbolic partial differential equation for unsteady flow analysis of the PIG driving and expelled gas, and nonhomogeneous differential equation for dynamic analysis of PIG. The nonlinear equation is solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used when we solve the steady flow equations to get initial flow values and the dynamic equation of PIG. The gas upstream and downstream of PIG are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. The simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of PIG with different operational conditions of pipeline.

  • PDF

The Geolocation Based on Total Least Squares Algorithm Using Satellites (위성을 이용한 Total Least Squares 기반 신호원 측위 알고리즘)

  • 박영미;조상우;전주환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.255-261
    • /
    • 2004
  • The problem of geolocation using multiple satellites is to determine the position of a transmitter located on the Earth by processing received signals. The specific problem addressed in this paper is that of estimating the position of a stationary transmitter located on or above the Earth's surface from measured time difference of arrivals (TDOA) by a geostationary orbiting (GSO) satellite and a low earth orbiting (LEO) satellite. The proposed geolocation method is based on the total least squares (TLS) algorithm. Under erroneous positions of the satellites together with noisy TDOA measurements, the TLS algorithm provides a better solution. By running Monte-Carlo simulations, the proposed method is compared with the ordinary least squares (LS) approach.

Prototype Development of GPS Jammer Localization System for GPS based Air Navigation System (GPS기반 항공 항법 장비를 위한 전파위협원 위치추적 시작품 개발)

  • Kang, Jae Min;Lim, Deok Won;Chun, Sebum;Heo, Moon Beom;Yeom, Chan Hong
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.40-48
    • /
    • 2014
  • In this paper, a prototype of GPS jammer localization system for precise landing is developed. The jammer localization system consists of the four jamming signal receivers for collecting RF signal, one central tracking station for estimating jammer position, and one monitoring station for displaying estimated position on the map. In order to estimate jammer location TDOA and AOA algorithm are introduced, and the function and design parameters of the developed prototype are proposed. CW, DSSS, Swept CW jamming signals were generated and used. From the results, it can be confirmed that developed system meets the performance goal.