• Title/Summary/Keyword: Estimated Mean Error

Search Result 569, Processing Time 0.033 seconds

Error Bounds Analysis of the Environmental Data in Lake Shihwa and Incheon Coastal Zone (시화호.인천연안 환경자료의 오차범위 분석)

  • Cho, Hong-Yeon
    • Ocean and Polar Research
    • /
    • v.30 no.2
    • /
    • pp.149-158
    • /
    • 2008
  • The characteristic analysis of the estimated population parameters, i.e., standard deviation and error bound of coastal pollutant concentrations (hereafter PC, i.e., COD, TN, and TP concentrations), was carried out by using environmental data with different sampling frequency in Lake Shihwa and Incheon coastal zone. The results clearly show that standard deviation of the PC increases as its mean value increases. The error bounds of the annual mean values based on seasonally measured DO concentrations and PC data in Incheon coastal zone were estimated as ranges 2.26 mg/l, $0.68{\sim}0.86\;mg/l$, $0.62{\sim}0.80\;mg/l$, and $0.074{\sim}0.082\;mg/l$, respectively. In terms of annual mean of the DO concentration and PC in Lake Shihwa, the error bounds based on monthly measured data from 1997 to 2003 were also estimated as ranges 4.0 mg/l, 3.0 mg/l, $0.5{\sim}1.0\;mg/l$, and 0.05 mg/l, respectively. The error bound on the basis of real-time monitoring data is $7{\sim}13%$ only as compared to that of monthly measured data.

Comparison of incoming solar radiation equations for evaporation estimation (증발량 산정을 위한 입사태양복사식 비교)

  • Rim, Chang-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.129-143
    • /
    • 2011
  • In this study, to select the incoming solar radiation equation which is most suitable for the estimation of Penman evaporation, 12 incoming solar radiation equations were selected. The Penman evaporation rates were estimated using 12 selected incoming solar radiation equations, and the estimated Penman evaporation rates were compared with measured pan evaporation rates. The monthly average daily meteorological data measured from 17 meteorological stations (춘천, 강능, 서울, 인천, 수원, 서산, 청주, 대전, 추풍령, 포항, 대구, 전주, 광주, 부산, 목포, 제주, 진주) were used for this study. To evaluate the reliability of estimated evaporation rates, mean absolute bias error(MABE), root mean square error(RMSE), mean percentage error(MPE) and Nash-Sutcliffe equation were applied. The study results indicate that to estimate pan evaporation using Penman evaporation equation, incoming solar radiation equation using meteorological data such as precipitation, minimum air temperature, sunshine duration, possible duration of sunshine, and extraterrestrial radiation are most suitable for 11 study stations out of 17 study stations.

A Study on High Temperature Low Cycle Fatigue Crack Growth Modelling by Neural Networks (신경회로망을 이용한 고온 저사이클 피로균열성장 모델링에 관한 연구)

  • Ju, Won-Sik;Jo, Seok-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.2752-2759
    • /
    • 1996
  • This paper presents crack growth analysis approach on the basis of neural networks, a branch of cognitive science to high temperature low cycle fatigue that shows strong nonlinearity in material behavior. As the number of data patterns on crack growth increase, pattern classification occurs well and two point representation scheme with gradient of crack growth curve simulates crack growth rate better than one point representation scheme. Optimal number of learning data exists and excessive number of learning data increases estimated mean error with remarkable learning time J-da/dt relation predicted by neural networks shows that test condition with unlearned data is simulated well within estimated mean error(5%).

Selection of Data-adaptive Polynomial Order in Local Polynomial Nonparametric Regression

  • Jo, Jae-Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.177-183
    • /
    • 1997
  • A data-adaptive order selection procedure is proposed for local polynomial nonparametric regression. For each given polynomial order, bias and variance are estimated and the adaptive polynomial order that has the smallest estimated mean squared error is selected locally at each location point. To estimate mean squared error, empirical bias estimate of Ruppert (1995) and local polynomial variance estimate of Ruppert, Wand, Wand, Holst and Hossjer (1995) are used. Since the proposed method does not require fitting polynomial model of order higher than the model order, it is simpler than the order selection method proposed by Fan and Gijbels (1995b).

  • PDF

New criteria to fix number of hidden neurons in multilayer perceptron networks for wind speed prediction

  • Sheela, K. Gnana;Deepa, S.N.
    • Wind and Structures
    • /
    • v.18 no.6
    • /
    • pp.619-631
    • /
    • 2014
  • This paper proposes new criteria to fix hidden neuron in Multilayer Perceptron Networks for wind speed prediction in renewable energy systems. To fix hidden neurons, 101 various criteria are examined based on the estimated mean squared error. The results show that proposed approach performs better in terms of testing mean squared errors. The convergence analysis is performed for the various proposed criteria. Mean squared error is used as an indicator for fixing neuron in hidden layer. The proposed criteria find solution to fix hidden neuron in neural networks. This approach is effective, accurate with minimal error than other approaches. The significance of increasing the number of hidden neurons in multilayer perceptron network is also analyzed using these criteria. To verify the effectiveness of the proposed method, simulations were conducted on real time wind data. Simulations infer that with minimum mean squared error the proposed approach can be used for wind speed prediction in renewable energy systems.

A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model (농업기상 결측치 보정을 위한 통계적 시공간모형)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

Rainfall Seasonality and Estimation Errors of Area-Average Rainfall (강수의 계절성과 면적평균강수량의 추정오차)

  • Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.575-581
    • /
    • 2002
  • This study evaluates the variation of estimation error of area-average rainfall due to rainfall seasonality. Both the cases considering and not considering the spatial correlation are compared to derive the characteristics of estimation error. Similar cases with different accumulation time without considering the rainfall seasonality are also investigated. This study was applied to the Geum-river basin with total 28 rain gauge measurements haying more than 30 years of daily rainfall measurements. As results of the study we found that: (1) The absolute estimation error of monthly area-average rainfall show strong seasonality like the total rainfall amount. However, the relative estimation error normalized by its mean was estimated to have similar values about 5 to 8% except January and December. (2) The relative estimation error of annual area-average rainfall estimated was found to have the estimation error about 3% of its annual mean. (3) However, the relative estimation error normalized by the standard deviation remains almost the same for both monthly and annual rainfall amounts, which was estimated about 11% of its standard deviation. (4) Finally, the estimation error without considering the spatial correlation was found to become almost twice the estimation error with considering the spatial correlation.

Development of new models to predict the compressibility parameters of alluvial soils

  • Alzabeebee, Saif;Al-Taie, Abbas
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.437-448
    • /
    • 2022
  • Alluvial soil is challenging to work with due to its high compressibility. Thus, consolidation settlement of this type of soil should be accurately estimated. Accurate estimation of the consolidation settlement of alluvial soil requires accurate prediction of compressibility parameters. Geotechnical engineers usually use empirical correlations to estimate these compressibility parameters. However, no attempts have been made to develop correlations to estimate compressibility parameters of alluvial soil. Thus, this paper aims to develop new models to predict the compression and recompression indices (Cc and Cr) of alluvial soils. As part of the study, geotechnical laboratory tests have been conducted on large number of undisturbed samples of local alluvial soil. The obtained results from these tests in addition to available results from the literature from different parts in the world have been compiled to form the database of this study. This database is then employed to examine the accuracy of the available empirical correlations of the compressibility parameters and to develop the new models to estimate the compressibility parameters using the nonlinear regression analysis. The accuracy of the new models has been accessed using mean absolute error, root mean square error, mean, percentage of predictions with error range of ±20%, percentage of predictions with error range of ±30%, and coefficient of determination. It was found that the new models outperform the available correlations. Thus, these models can be used by geotechnical engineers with more confidence to predict Cc and Cr.

Applicability Analysis of FAO56 Penman-Monteith Methodology for Estimating Potential Evapotranspiration in Andong Dam Watershed Using Limited Meteorological Data (제한적인 기상자료 조건에서의 잠재증발산량 추정을 위한 FAO56 Penman-Monteith 방법의 적용성 분석 - 안동댐 유역을 사례로 -)

  • Kim, Sea Jin;Kim, Moon-il;Lim, Chul-Hee;Lee, Woo-Kyun;Kim, Baek-Jo
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.125-143
    • /
    • 2017
  • This study is conducted to estimate potential evapotranspiration of 10 weather observing systems in Andong Dam watershed with FAO56 Penman-Monteith (FAO56 PM) methodology using the meteorological data from 2013 to 2014. Also, assuming that there is no solar radiation data, humidity data or wind speed data, the potential evapotranspiration was estimated by FAO56 PM and the results were evaluated to discuss whether the methodology is applicable when meteorological dataset is not available. Then, the potential evapotranspiration was estimated with Hargreaves method and compared with the potential evapotranspiration estimated by FAO56 PM only with the temperature dataset. As to compare the potential evapotranspiration estimated from the complete meteorological dataset and that estimated from limited dataset, statistical analysis was performed using the Root Mean Square Error (RMSE), the Mean Bias Error (MBE), the Mean Absolute Error (MAE) and the coefficient of determination ($R^2$). Also the Inverse Distance Weighted (IDW) method was performed to conduct spatial analysis. From the result, even when the meteorological data is limited, FAO56 PM showed relatively high accuracy in calculating potential evapotranspiration by estimating the meteorological data.

Integer-Valued HAR(p) model with Poisson distribution for forecasting IPO volumes

  • SeongMin Yu;Eunju Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.273-289
    • /
    • 2023
  • In this paper, we develop a new time series model for predicting IPO (initial public offering) data with non-negative integer value. The proposed model is based on integer-valued autoregressive (INAR) model with a Poisson thinning operator. Just as the heterogeneous autoregressive (HAR) model with daily, weekly and monthly averages in a form of cascade, the integer-valued heterogeneous autoregressive (INHAR) model is considered to reflect efficiently the long memory. The parameters of the INHAR model are estimated using the conditional least squares estimate and Yule-Walker estimate. Through simulations, bias and standard error are calculated to compare the performance of the estimates. Effects of model fitting to the Korea's IPO are evaluated using performance measures such as mean square error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) etc. The results show that INHAR model provides better performance than traditional INAR model. The empirical analysis of the Korea's IPO indicates that our proposed model is efficient in forecasting monthly IPO volumes.