Substance P is one of the neuropeptide which presents highly in tension site of periodontal ligament during the orthodontic tooth movement. It has bnn also hon as one of the neuropeptides which cause neurogenic inflammation in various tissues and organs. However, there is no report about the effect of substance P on major extracellular matrix protein, collagen production. The purpose of this study was to evaluate the collagen production by substance P in human periodontal ligament cell. The collagenase-digestion method was used to evaluate collagen production and also used Northern blot hybridization for the evaluation of collagen mRNA level. This study also Included in terms of prostanglandins and gelatinase production with respect to collagen production. For the collagen degradation, zymography was used to estimate denatured collagen degradation. Dose-dependent effect of substance P on noncollagen protein, collagen, and percent collagen was that substance P increased noncollagen protein synthesis, but decreased collagen sytnsis. So the percent collagen, which determined by relative collagen production against total protein production, w3s decreased from $7\%\;to\;3.6\%$. This inhibitory effect of substance P on collagen production was disappeared when cells were treated concomitantly with indomethacin. It means that substance P-induced inhibitory effect on collagen production was due at least in part to the production of prostaglandins. To evaluate whether substance P-induced inhibitory effect on collagen production is correspond to the steady-state levels of procollagen mRNA, Northern blot hybridization was performed and it showed that substance P has no effect on the steady-slate level of ${\alpha}1(I)$ procollagen mRNA. It means that the inhibitory effect of substance P on collagen production was due to the change of a certain mechanism after posttranscription. In this context, gelatinase production by substance P in periodontal ligament cells was evaluated by zymography. Zymogram showed that substance P has no effect on gelatinase production in periodontal ligament cells. To explore wheter substance P-induced inhibitory effect on collagen production is selevtive in periodontal ligament cells or not, MC3T3-E1 cells which originated from mouse calvaria was used. It showed that substance P has no effect on collagen production in MC3T3-E1 cells. Taken together, substance P inhibits collagen production in human periodontal ligament cells. This effect was not due to the change of the steady-state level of procollagen mRNA and gelatinase production, but due at least in part to the change of prostaglandins production.
In order to study the closure stage of cranial sutures and its correlations with age, the ectocranial closure stage of coronal suture, sagittal suture, and lambdoidal suture of 67 skulls was measured. Among the skulls kept at the department of anatomy, college of medicine, Yonsei University, the ones with ages identified were used for this study. These measurements of suture closure were conducted by 4 examiners independently. The sutures were further divided by Frederic's method into 16 suture parts. The closure stages were classified by five stages of Broca-Ribbe. The following results were obtained: 1. The inter-observer reliability among 4 examiners showed high intraclass correlation coefficient of over 0.75(mean : 0.856) in all suture parts. Therefore, the determination of closure stage wasn't influenced by the subjective view of each examiner. 2. In all suture parts, the closure stage increased proportionally with age.(p<0.01) In terms of each suture part, the S2 part of sagittal suture showed the highest correlation(68.1%) while the L1-R part of lambdoidal suture showed the lowest correlation(51.3%). In addition, in terms of suture types, the correlation with age decreased in the order of sagittal suture(60.0%), coronal suture(57.7%), and lambdoidal suture (55.7%). In general, the average value of suture closure stages had 57.8% correlation with age(p<0.01). 3. The most frequent suture closure stage according to age group was '0' for ages below 30, '0' and '1' for ages within the 30's, '1' and '2' for ages within the 40's, and '2' for ages within the 50's. With older age groups, the frequency of '3' and '4' increased, and the suture closure stage increased proportionally with age. 4. The mean age by closure stage of each suture were within the 40's for the closure stage of '1', within the 50's for the closure stage of '2', and from 50's through 60's for the closure stage of '3'. The standard deviation was over 10 for all closure stages. In addition, at the same suture closure stage, the mean age according to the coronal suture was higher than the ages according to the sagittal suture or lambdoidal suture. Especially, C1-R, C1-L, C2-R, and C2-L parts showed the highest age when at the same suture closure stage. 5. The values appropriate for age estimations using suture closure stages of 16 suture parts were calculated, and a calculator for age estimation ($R^2=0.6944$, p<0.01) by ectocranial suture closure stage for Koreans is presented. From the above results, the method of using the closure stage of sutures of the skull to estimate age can be useful in individual identification of forensic science. Further extensive and accurate research using larger samples would be worthy of study.
The purpose of the present study is to estimate the regional and seasonal variations of dissolved inorganic nitrogen (DIN) flux across the sediment-water interface of the inner and central areas of Hiroshima Bay from August 1994 to May 1995. In addition it compares the measured methods and estimates the effect of DIN released from sediment to the primary production of Hiroshima Bay. One method used in this study is to calculate DIN flux from a concentration gradient between sediment porewaters and the overlying water, and the other method is to measure DIN flux from the sediment-core experiment. The fluxes of $NH_{4}^{+}-N\;and\;NO_{2}^{+}\;+\;NO_{3}^{-}-N$ in the inner area were higher than those in central area, all of which showed seasonal variation. $NH_{4}^{+}-N$ flux was maximum in August, while $NO_{2}^{-}\;+\;NO_{3}^{-}-N$ flux was high in January compared with the other seasons. The calculated $NH_{4}^{+}-N\;and\;NO_{2}^{-}+NO_{3}^{-}-N$ fluxes from sediments were $18.2\~60.8\;{\mu}g-at/m^2{\cdot}hr\;and\;0.24\~18.2\;{\mu}g-at/m^2{\cdot}hr$, respectively. The measured $NH_{4}^{+}-N\;and\;NO_{2}^{-}+NO_{3}^{-}-N$ fluxes across the sediment-water interface were $2.00\~111\;{\mu}g-at/m^2{\cdot}hr\;and\;-265\~82.9\;{\mu}g-at/m^2{\cdot}hr$, respectively. The former was lower than the tatter. The calculated $NH_{4}^{+}-N$ flux showed closer relation to environmental factors (dissolved of gen in the overlying water, temperature and redox condition of the sediments) than the measured one did. On the other hand, in the case of $NO_{2}^{-}+NO_{3}^{-}-N$ flux both the calculated and the measured showed little relation to environmental factors, while they turned out to have stronger relation with their concentration in sediments. DIN released from the sediment is expected to support about $25\%\~67\%$ of the primary production in Hiroshima Bay.
Heat flux of the East China Sea was estimated with the bulk method, the East China mount based on the marine meteorological data and cloud amount data observed by a satellite. Solar radiation is maximum in May and minimum in December. Its amount decreases gradually southward during the winter half year (from October to March), and increases northward during the summer half year (from April to September) due to the influence of Changma (Baiu) front. The spatial difference of long-wave radiation is relatively small, but its temporal difference is quite large, i.e., the value in February is about two times greater than that in July. The spatial patterns of sensible and latent heat fluxes reflect well the effect of current distribution in this region. The heat loss from the ocean surface is more than $830Wm^{-2}$ in winter, which is five times greater than the net radiation amount during the same period, The annual net heat flux is negative, which means heat loss from the sea surface, in the whole region over the East China Sea. The region with the largest loss of more than $400Wm^{-2}$ in January is observed over the southwestern Kyushu. The annual mean value of solar radiation, long-wave radiation, sensible and latent heat fluxes are estimated $187Wm^{-2},\;-52Wm^{-2},\;-30Wm^{-2}\;and\;-137Wm^{-2}$, respectively, consequently the East China Sea losses the energy of $32Wm^{-2}(2.48\times10^{13}W)$. Through the heat exchange between the air and the sea, the heat energy of $0.4\times10^{13}W$ is supplied from the air to the sea in A region (the Yellow Sea), $2.1\times10^{13}W$ in B region (the East China Sea) and $1.7\times10^{13}W$ in C region (the Kuroshio part), respectively.
Korean Journal of Agricultural and Forest Meteorology
/
v.17
no.3
/
pp.227-235
/
2015
Using eddy covariance method, net ecosystem exchange (NEE) of $CO_2$ ($F_{CO_2}$), $H_2O$ (LE), and sensible heat (H) can be approximated as the sum of eddy flux ($F_c$) and storage flux term ($F_s$). Depending on strength and distribution of sink/source of scalars and magnitude of vertical turbulence mixing, the rates of changes in scalars are different with height. In order to calculate $F_s$ accurately, the differences should be considered using scalar profile measurement. However, most of flux sites for agricultural lands in Asia do not operate profile system and estimate $F_s$ using single-level scalars from eddy covariance system under the assumption that the rates of changes in scalars are constant regardless of the height. In this study, we measured $F_c$ and $F_s$ of $CO_2$, $H_2O$, and air temperature ($T_a$) using eddy covariance and profile system (i.e., the multi-level measurement system in scalars from eddy covariance measurement height to the land surface) at the Chengmicheon farmland site in Korea (CFK) in order to quantify the differences between $F_s$ calculated by single-level measurements ($F_s_{-single}$ i.e., $F_s$ from scalars measured by profile system only at eddy covariance system measurement height) and $F_s$ calculated by profile measurements and verify the errors of NEE caused by $F_s_{-single}$. The rate of change in $CO_2$, $H_2O$, and Ta were varied with height depending on the magnitudes and distribution of sink and source and the stability in the atmospheric boundary layer. Thus, $F_s_{-single}$ underestimated or overestimated $F_s$ (especially 21% underestimation in $F_s$ of $CO_2$ around sunrise and sunset (0430-0800 h and 1630-2000 h)). For $F_{CO_2}$, the errors in $F_s_{-single}$ generated 3% and 2% underestimation of $F_{CO_2}$ during nighttime (2030-0400 h) and around sunrise and sunset, respectively. In the process of nighttime correction and partitioning of $F_{CO_2}$, these differences would cause an underestimation in carbon balance at the rice paddy. In contrast, there were little differences at the errors in LE and H caused by the error in $F_s_{-single}$, irrespective of time.
Kim, Taehyung;Kim, Young-Seog;Lee, Youngmin;Choi, Jin-Hyuck
The Journal of Engineering Geology
/
v.26
no.2
/
pp.277-290
/
2016
Deep geological cross-sectional data is generally not common nor easy to construct, because it is expensive and requires a great deal of time. As a result, geological interpretations at depth are limited. Many scientists attempt to construct geological cross-sections at depth using geological surface data and geophysical data. In this paper, we suggest a method for constructing cross-sections from limited geological surface data in a target area. The reason for this study is to construct and interpret geological cros-sections at depth to evaluate heat flow anomaly along the Yangsan fault. The Yangsan Fault passes through the south-eastern part of the Korean Peninsula. The cross-section is constructed from Sangbukmyeon to Unchonmyeon passing perpendicularly through the Yangsan Fault System trending NW-SE direction. The geological cross-section is constructed using the following data: (1) Lithologic distributions and main structural elements. (2) Extensity of sedimentary rock and igneous rock, from field mapping. (3) Fault dimension calculated based on geometry of exposed surface rupture, and (4) Seismic and core logging data. The Yangsan Fault System is composed of the Jain fault, Milyang fault, Moryang fault, Yangsan fault, Dongnae fault, and Ingwang fault which strike NNE-SSW. According to field observation, the western section of the Yangsan fault bounded by igneous rocks and in the eastern section sedimentary rocks are dominant. Using surface fault length we infer that the Yangsan Fault System has developed to a depth of kilometers beneath the surface. According to seismic data, sedimentary rocks that are adjacent to the Yangsan fault are thin and getting thicker towards the east of the section. In this study we also suggest a new method to recognize faults using core loggings. This analysis could be used to estimate fault locations at different scales.
The ecological characteristics of the Korean Aucha perch, Coreoperca herzi, were determined in order to estimate stock of the mid-upper system of the Seomjin River. The age was determined by counting the otolith annuli. The oldest fish observed in this study was 5 years old. Relationships between body length (BL) and body weight (BW) were $BW=0.0195BL^{3.08}$ ($R^2=0.966$) (p<0.01). Relationships between the otolith radius (R) and body length (BL) were BL=3.882R+1.66 ($R^2=0.944$). The von Bertalanffy growth parameters estimated from a non-linear regression method were $L_{\infty}=19.68\;cm$, $W_{\infty}=188.64\;g$, $K=0.17\;year^{-1}$ and $t_0=-1.46$ year. Therefore, growth in length of the fish was expressed by the von Bertalanffy's growth equation as $L_t=19.68$ ($1-e^{-0.17(t+1.46)}$) ($R^2=0.997$). The annual survival rate (S) was estimated to be $0.666\;year^{-1}$. The instantaneous coefficient of natural mortality (M) of estimated from the Zhang and Megrey method was $0.346\;year^{-1}$, and instantaneous coefficient of fishing mortality (F) was calculated $0.061\;year^{-1}$. From the estimates of survival rate (S), the instantaneous coefficient of total mortality(Z) was estimated to be $0.407\;year^{-1}$.
This study analyzed nonmetallic inclusions in iron swords with a ring pommel excavated in the Ipbuk-dong, Suwon. Scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS) was used to estimate the iron-making temperature, and we compared the oxide with $SiO_2$ to investigate the heat-treatment technology in the production of iron swords with a ring pommel by investigating the artificial insertion of a slag former and the metallurgical structure. From the wustite observed in most of the specimens, it is judged that these swords were produced by heating and forging iron smelted at a low temperature using the solid reduction method. In addition, judging from the partial presence of $P_2O_5$, it is assumed that they were smelted directly with natural ore, not calcined. From the ratios of $CaO/SiO_2$ and $TiO_2/SiO_2$, it is judged that the raw material for iron-making was iron ore and that a calcareous slag former was not artificially inserted. The structure of the blade part on the front end was pure iron. From the high carbon content of the blade part on the ring pommel and the formation of a martensitic structure and pearlite colony, it is judged that they were tempered after carburizing and that the back, handle part, and ring pommel were unintentionally carburized. Judging from the structure of these specimens, it was noted that they were produced by applying artificial partial heat-treatment technology. This study attempted to present a more scientific analysis by using the method of interpretation through component analysis of nonmetallic inclusions appearing in one relic by the ratio of the oxide divided by $SiO_2$. It is judged that reinterpreting the arguments by the results of the existing analysis and research in this way can obtain different interpretations.
To estimate and analyze an interested science and technology level in any case requires three basic informations: (1) relative positions of our technology level, (2) other relevant technology level of the world best country holding the state of the art technology, and (3) its theoretical or practical maximum level within a certain period of time. Further, additional information from analyzing its respective rate of technology changes is necessary. It seems that most previous empirical or case studies on technology level have not considered third and fourth informations seriously, and thus critically have missed important findings from a dynamic point of view on the matter. A dynamic approach considering types of development processes and paths as well as current position needs an application of a concept of technology development stages and respective growth curves. This paper proposes a new method of approach and application by implementing relatively simple types of the growth curve(S-curve) such as logistic and Comports curves and applying estimation results of these curves to ten core technologies of the growth engines for the next future generation in Korea. The study implies that Korean science and technology level in general clearly gets higher as it approaches to a recent time of period, but relative technology gap from the world best in terms of catching-up period does not get better or narrower in case of at least part of the concerned technologies such as bio new drugs and human organs, and intelligence robots. The possibility does exist that some of our concerned technologies shooting for the next future generation may not come to the world highest level in the near future. The purpose of this study is to propose possibilities of catching-up, if any, by estimating its relevant type of growth pattern by way of measuring and analyzing technology level and by analyzing the technology development process through a position analysis. At this stage this study tries to introduce a new theoretical approach of estimating technology level and its application to existing case study results(data) from Korea Institute of Science and Technology Planning and Evaluation(KISTEP) and Korea Institute of Industrial Technology Evaluation and Planing(ITEP), for years of 2004 and 2006 respectively. The study has some limitations in terms of accuracy of measuring(estimating) a relevant growth curve to a particular technology, feasibility of applying estimated results, accessing and analyzing panel experts opinions. Hence, it is recommended that further study would follow soon enough to verify practical applicability and possible expansion of the study results.
Background : The causes of solitary pulmonary nodule are many, but the main concern is whether the nodule is benign or malignant. Because a solitary pulmonary nodule is the initial manifestation of the majority of lung cancer, accurate clinical and radiologic interpretation is important. Bayes' theorem is a simple method of combining clinical and radiologic findings to estimate the probability that a nodule in an individual patients is malignant. We estimated the probability of malignancy of solitary pulmonary nodules with a specific combination of features by Bayesian approach. Method : One hundred and eighty patients with solitary pulmonary nodules were identified from multi-center analysis. The hospital records of these patients were reviewed and patient age, smoking history, original radiologic findings, and diagnosis of the solitary pulmonary nodules were recorded. The diagnosis of solitary pulmonary nodule was established pathologically in all patients. We used to Bayes' theorem to devise a simple scheme for estimating the likelihood that a solitary pulmonary nodule is malignant based on radiological and clinical characteristics. Results : In patients characteristics, the probability of malignancy increases with advancing age, peaking in patients older than 66 year of age(LR : 3.64), and higher in patients with smoking history more than 46 pack years(LR : 8.38). In radiological features, the likelihood ratios were increased with increasing size of the nodule and nodule with lobulated or spiculated margin. Conclusion : In conclusion, the likelihood ratios of malignancy may improve the accuracy of the probability of malignancy, and can be a guide of management of solitary pulmonary nodule.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.