Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM (딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증)
-
- Journal of Intelligence and Information Systems
- /
- v.24 no.4
- /
- pp.1-32
- /
- 2018
In addition to stakeholders including managers, employees, creditors, and investors of bankrupt companies, corporate defaults have a ripple effect on the local and national economy. Before the Asian financial crisis, the Korean government only analyzed SMEs and tried to improve the forecasting power of a default prediction model, rather than developing various corporate default models. As a result, even large corporations called 'chaebol enterprises' become bankrupt. Even after that, the analysis of past corporate defaults has been focused on specific variables, and when the government restructured immediately after the global financial crisis, they only focused on certain main variables such as 'debt ratio'. A multifaceted study of corporate default prediction models is essential to ensure diverse interests, to avoid situations like the 'Lehman Brothers Case' of the global financial crisis, to avoid total collapse in a single moment. The key variables used in corporate defaults vary over time. This is confirmed by Beaver (1967, 1968) and Altman's (1968) analysis that Deakins'(1972) study shows that the major factors affecting corporate failure have changed. In Grice's (2001) study, the importance of predictive variables was also found through Zmijewski's (1984) and Ohlson's (1980) models. However, the studies that have been carried out in the past use static models. Most of them do not consider the changes that occur in the course of time. Therefore, in order to construct consistent prediction models, it is necessary to compensate the time-dependent bias by means of a time series analysis algorithm reflecting dynamic change. Based on the global financial crisis, which has had a significant impact on Korea, this study is conducted using 10 years of annual corporate data from 2000 to 2009. Data are divided into training data, validation data, and test data respectively, and are divided into 7, 2, and 1 years respectively. In order to construct a consistent bankruptcy model in the flow of time change, we first train a time series deep learning algorithm model using the data before the financial crisis (2000~2006). The parameter tuning of the existing model and the deep learning time series algorithm is conducted with validation data including the financial crisis period (2007~2008). As a result, we construct a model that shows similar pattern to the results of the learning data and shows excellent prediction power. After that, each bankruptcy prediction model is restructured by integrating the learning data and validation data again (2000 ~ 2008), applying the optimal parameters as in the previous validation. Finally, each corporate default prediction model is evaluated and compared using test data (2009) based on the trained models over nine years. Then, the usefulness of the corporate default prediction model based on the deep learning time series algorithm is proved. In addition, by adding the Lasso regression analysis to the existing methods (multiple discriminant analysis, logit model) which select the variables, it is proved that the deep learning time series algorithm model based on the three bundles of variables is useful for robust corporate default prediction. The definition of bankruptcy used is the same as that of Lee (2015). Independent variables include financial information such as financial ratios used in previous studies. Multivariate discriminant analysis, logit model, and Lasso regression model are used to select the optimal variable group. The influence of the Multivariate discriminant analysis model proposed by Altman (1968), the Logit model proposed by Ohlson (1980), the non-time series machine learning algorithms, and the deep learning time series algorithms are compared. In the case of corporate data, there are limitations of 'nonlinear variables', 'multi-collinearity' of variables, and 'lack of data'. While the logit model is nonlinear, the Lasso regression model solves the multi-collinearity problem, and the deep learning time series algorithm using the variable data generation method complements the lack of data. Big Data Technology, a leading technology in the future, is moving from simple human analysis, to automated AI analysis, and finally towards future intertwined AI applications. Although the study of the corporate default prediction model using the time series algorithm is still in its early stages, deep learning algorithm is much faster than regression analysis at corporate default prediction modeling. Also, it is more effective on prediction power. Through the Fourth Industrial Revolution, the current government and other overseas governments are working hard to integrate the system in everyday life of their nation and society. Yet the field of deep learning time series research for the financial industry is still insufficient. This is an initial study on deep learning time series algorithm analysis of corporate defaults. Therefore it is hoped that it will be used as a comparative analysis data for non-specialists who start a study combining financial data and deep learning time series algorithm.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.
This study was to investigate the user's thermal environments of the children's parks according to pavements and sunscreen types during periods of heat waves. The measurements were conducted at the sand pits, rubber chip pavement, shelters, and green shade ground of the two children's parks located in Jinju, Korea(Chilam:
In spite of recent remarkable recent development in both western and oriental medical sciences, there is still only a shallow understanding of individual differences for various prognoses of incurable diseases and immunopathy diseases. Nevertheless, the care, cure and prevention methods of Sasang Constitutional Medicine are broadly used as an effective treatment of incurable diseases like immunopathy diseases and stress-related diseases and diseases due to aging. In this sense, the establishment of classification norms is urgent and essential for the worldwide application of Sasang Constitutional Medicine(SCM). This study began with the confirmation process of whether Sasang Constitutional types exist in Americans. To accomodate for cultural differences, the distinguishing tool was readjusted so that Sasang Constitutional Types in Americans could be determined. Hence, the selected tool is the new QSCCII+, which is a newly revised English version of the QSCCII. QSCCII was made and standardized by Dept. of SCM in Kyung Hee Medical Center and Dr. Kim7). The evaluation methods of the old version were improved in the new QSCCII+ through necessary statistical manipulation. The original QSCCII was officially authorized by the Korean Society of Sasang Constitutional Medicine as the only computerized version of Sasang diagnostics. This study is the first attempt to design a new diagnostic tool for the classification of Sasang Constitutional types in North Americans with the revision of QSCCII. The subjects of this study were selected from the cooperative people among the students and staffs of the University of Bridgeport and the patients who visited the Clinic in the Health Science Center. This study takes for about 1 year from 1998. 8 to 1999. 8 The conclusions of the study can be summarized as follows: 1. Sasang constitutional types also exist in Americans. It can also naturally be inferred that Sasang Constitutional types exist in all human beings, for there are many different human races in America. 2. There are more So-Yang In's than any other types in American white people. This result confirms the hypothesis that there also exist Sasang Constitutional types in westerners. 3. The result of repetitive tests suggests that the new QSCCII+ is an effective diagnostic tool for westerners when we consider the constant diagnostic results of the QSCCII+. 4. Sasang Constitutional types exit in the sample group regardless of racial difference. 5. The question items that were not often checked by Americans need to be modified into more understandable expressions. 6. The standardization of diagnosis for Americans should be established by use of the QSCCII+ 7. It can be guessed that there are many Tae-yang In's among the 71 persons who could not be clearly classified by the QSCCII+. Due to the scarcity of Tae-yang-In in general, it is important to improve upon the discernability of the QSCC II+. 8. The results of the Sasang Constitutional distribution in North Americans are as follows: The percentage of So-yang In distribution in the sample group is 36.25%(87persons), that of Tae-eum In is 13.75%(33persons), and that of So-eum In is 20.41%(49persons).
As business incubation centers (BICs) have been operating for more than 10 years in Korea, many early stage startups tend to use the services provided by the incubating centers. BICs in Korea have accumulated the knowledge and experience in the past ten years and their services have been considerably improved. The business incubating service has three facets : (1) business infrastructure service, (2) direct service, and (3) indirect service. The mission of BICs is to provide the early stage entrepreneurs with the incubating service in a limited period time to help them grow strong enough to survive the fierce competition after graduating from the incubation. However, the incubating services sometimes fail to foster the independence of new startup companies, and raise the dependence of many companies on BICs. Thus, the dependence on BICs is a very important factor to understand the survival of the incubated startup companies after graduation from BICs. The purpose of this study is to identify the main factors that influence the firm's dependence on BICs and to characterize the relationships among the identified factors. The business incubating service is a core construct of this study. It includes various activities and resources, such as offering the physical facilities, legal service, and connecting them with outside organizations. These services are extensive and take various forms. They are provided by BICs directly or indirectly. Past studies have identified various incubating services and classify them in different ways. Based on the past studies, we classify the business incubating service into three categories as mentioned above : (1) business infrastructure support, (2) direct support, and (3) networking support. The business infrastructure support is to provide the essential resources to start the business, such as physical facilities. The direct support is to offer the business resources available in the BICs, such as human, technical, and administrational resources. Finally, the indirect service was to support the resource in the outside of business incubation center. Dependence is generally defined as the degree to which a client firm needs the resources provided by the service provider in order to achieve its goals. Dependence is generated when a firm recognizes the benefits of interacting with its counterpart. Hence, the more positive outcomes a firm derives from its relationship with the partner, the more dependent on the partner the firm must inevitably become. In business incubating, as a resident firm is incubated in longer period, we can predict that her dependence on BICs would be stronger. In order to foster the independence of the incubated firms, BICs have to be able to manipulate the provision of their services to control the firms' dependence on BICs. Based on the above discussion, the research model for relationships between dependence and its affecting factors was developed. We surveyed the companies residing in BICs to test our research model. The instrument of our study was modified, in part, on the basis of previous relevant studies. For the purposes of testing reliability and validity, preliminary testing was conducted with firms that were residing in BICs and incubated by the BICs in the region of Gwangju and Jeonnam. The questionnaire was modified in accordance with the pre-test feedback. We mailed to all of the firms that had been incubated by the BICs with the help of business incubating managers of each BIC. The survey was conducted over a three week period. Gifts (of approximately ₩10,000 value) were offered to all actively participating respondents. The incubating period was reported by the business incubating managers, and it was transformed using natural logarithms. A total of 180 firms participated in the survey. However, we excluded 4 cases due to a lack of consistency using reversed items in the answers of the companies, and 176 cases were used for the analysis. We acknowledge that 176 samples may not be sufficient to conduct regression analyses with 5 research variables in our study. Each variable was measured through multiple items. We conducted an exploratory factor analysis to assess their unidimensionality. In an effort to test the construct validity of the instruments, a principal component factor analysis was conducted with Varimax rotation. The items correspond well to each singular factor, demonstrating a high degree of convergent validity. As the factor loadings for a variable (or factor) are higher than the factor loadings for the other variables, the instrument's discriminant validity is shown to be clear. Each factor was extracted as expected, which explained 70.97, 66.321, and 52.97 percent, respectively, of the total variance each with eigen values greater than 1.000. The internal consistency reliability of the variables was evaluated by computing Cronbach's alphas. The Cronbach's alpha values of the variables, which ranged from 0.717 to 0.950, were all securely over 0.700, which is satisfactory. The reliability and validity of the research variables are all, therefore, considered acceptable. The effects of dependence were assessed using a regression analysis. The Pearson correlations were calculated for the variables, measured by interval or ratio scales. Potential multicollinearity among the antecedents was evaluated prior to the multiple regression analysis, as some of the variables were significantly correlated with others (e.g., direct service and indirect service). Although several variables show the evidence of significant correlations, their tolerance values range between 0.334 and 0.613, thereby demonstrating that multicollinearity is not a likely threat to the parameter estimates. Checking some basic assumptions for the regression analyses, we decided to conduct multiple regression analyses and moderated regression analyses to test the given hypotheses. The results of the regression analyses indicate that the regression model is significant at p < 0.001 (F = 44.260), and that the predictors of the research model explain 42.6 percent of the total variance. Hypotheses 1, 2, and 3 address the relationships between the dependence of the incubated firms and the business incubating services. Business infrastructure service, direct service, and indirect service are all significantly related with dependence (β = 0.300, p < 0.001; β = 0.230, p < 0.001; β = 0.226, p < 0.001), thus supporting Hypotheses 1, 2, and 3. When the incubating period is the moderator and dependence is the dependent variable, the addition of the interaction terms with the antecedents to the regression equation yielded a significant increase in R2 (F change = 2.789, p < 0.05). In particular, direct service and indirect service exert different effects on dependence. Hence, the results support Hypotheses 5 and 6. This study provides several strategies and specific calls to action for BICs, based on our empirical findings. Business infrastructure service has more effect on the firm's dependence than the other two services. The introduction of an additional high charge rate for a graduated but allowed to stay in the BIC is a basic and legitimate condition for the BIC to control the firm's dependence. We detected the differential effects of direct and indirect services on the firm's dependence. The firms with long incubating period are more sensitive to indirect service positively, and more sensitive to direct service negatively, when assessing their levels of dependence. This implies that BICs must develop a strategy on the basis of a firm's incubating period. Last but not least, it would be valuable to discover other important variables that influence the firm's dependence in the future studies. Moreover, future studies to explain the independence of startup companies in BICs would also be valuable.
With the advent of knowledge-based society, the revitalization of technological innovation type SMEs, termed "inno-biz" hereafter, has been globally recognized as a government policymakers' primary concern in strengthening national competitiveness, and much effort is being put into establishing polices of boosting the start-ups and innovation capability of SMEs. Especially, in that the inno-biz enables national economy to get vitalized by widening world markets with its superior technology, and thus, taking the initiative of extremely competitive world markets, its growth and development has greater significance. In the case of Korea, the government has been maintaining the policies since the late 1990s of stimulating the growth of SMEs as well as building various infrastructures to foster the start-ups of the SMEs such as venture businesses with high technology. In addition, since the enactment of "Innovation Promotion Law for SMEs" in 2001, the government has been accelerating the policies of prioritizing the growth and development of inno-biz. So, for the sound growth and development of Korean inno-biz, this paper intends to offer effective management strategies for SMEs and suggest proper policies for the government, by researching into the effect of technological innovation capability and technology commercialization capability as the primary business resources on business performance in Korean SMEs in the light of market information orientation. The research is carried out on Korean companies characterized as inno-biz. On the basis of OSLO manual and prior studies, the research categorizes their status. R&D capability, technology accumulation capability and technological innovation system are categorized into technological innovation capability; product development capability, manufacturing capability and marketing capability into technology commercialization capability; and increase in product competitiveness and merits for new technology and/or product development into business performance. Then the effect of each component on business performance is substantially analyzed. In addition, the mediation effect of technological innovation and technology commercialization capability on business performance is observed by the use of the market information orientation as a parameter. The following hypotheses are proposed. H1 : Technology innovation capability will positively influence business performance. H1-1 : R&D capability will positively influence product competitiveness. H1-2 : R&D capability will positively influence merits for new technology and/or product development into business performance. H1-3 : Technology accumulation capability will positively influence product competitiveness. H1-4 : Technology accumulation capability will positively influence merits for new technology and/or product development into business performance. H1-5 : Technological innovation system will positively influence product competitiveness. H1-6 : Technological innovation system will positively influence merits for new technology and/or product development into business performance. H2 : Technology commercializing capability will positively influence business performance. H2-1 : Product development capability will positively influence product competitiveness. H2-2 : Product development capability will positively influence merits for new technology and/or product development into business performance. H2-3 : Manufacturing capability will positively influence product competitiveness. H2-4 : Manufacturing capability will positively influence merits for new technology and/or product development into business performance. H2-5 : Marketing capability will positively influence product competitiveness. H2-6 : Marketing capability will positively influence merits for new technology and/or product development into business performance. H3 : Technology innovation capability will positively influence market information orientation. H3-1 : R&D capability will positively influence information generation. H3-2 : R&D capability will positively influence information diffusion. H3-3 : R&D capability will positively influence information response. H3-4 : Technology accumulation capability will positively influence information generation. H3-5 : Technology accumulation capability will positively influence information diffusion. H3-6 : Technology accumulation capability will positively influence information response. H3-7 : Technological innovation system will positively influence information generation. H3-8 : Technological innovation system will positively influence information diffusion. H3-9 : Technological innovation system will positively influence information response. H4 : Technology commercialization capability will positively influence market information orientation. H4-1 : Product development capability will positively influence information generation. H4-2 : Product development capability will positively influence information diffusion. H4-3 : Product development capability will positively influence information response. H4-4 : Manufacturing capability will positively influence information generation. H4-5 : Manufacturing capability will positively influence information diffusion. H4-6 : Manufacturing capability will positively influence information response. H4-7 : Marketing capability will positively influence information generation. H4-8 : Marketing capability will positively influence information diffusion. H4-9 : Marketing capability will positively influence information response. H5 : Market information orientation will positively influence business performance. H5-1 : Information generation will positively influence product competitiveness. H5-2 : Information generation will positively influence merits for new technology and/or product development into business performance. H5-3 : Information diffusion will positively influence product competitiveness. H5-4 : Information diffusion will positively influence merits for new technology and/or product development into business performance. H5-5 : Information response will positively influence product competitiveness. H5-6 : Information response will positively influence merits for new technology and/or product development into business performance. H6 : Market information orientation will mediate the relationship between technology innovation capability and business performance. H7 : Market information orientation will mediate the relationship between technology commercializing capability and business performance. The followings are the research results : First, as for the effect of technological innovation on business performance, the technology accumulation capability and technological innovating system have a positive effect on increase in product competitiveness and merits for new technology and/or product development, while R&D capability has little effect on business performance. Second, as for the effect of technology commercialization capability on business performance, the effect of manufacturing capability is relatively greater than that of merits for new technology and/or product development. Third, the mediation effect of market information orientation is identified to exist partially in information generation, information diffusion and information response. Judging from these results, the following analysis can be made : On Increase in product competitiveness, directly related to successful technology commercialization of technology, management capability including technological innovation system, manufacturing capability and marketing capability has a relatively strong effect. On merits for new technology and/or product development, on the other hand, capability in technological aspect including R&D capability, technology accumulation capability and product development capability has relatively strong effect. Besides, in the cast of market information orientation, the level of information diffusion within an organization plays and important role in new technology and/or product development. Also, for commercial success like increase in product competitiveness, the level of information response is primarily required. Accordingly, the following policies are suggested : First, as the effect of technological innovation capability and technology commercialization capability on business performance differs among SMEs; in order for SMEs to secure competitiveness, the government has to establish microscopic policies for SMEs which meet their needs and characteristics. Especially, the SMEs lacking in capital and labor are required to map out management strategies of focusing their resources primarily on their strengths. And the government needs to set up policies for SMEs, not from its macro-scaled standpoint, but from the selective and concentrative one that meets the needs and characteristics of respective SMEs. Second, systematic infrastructures are urgently required which lead technological success to commercial success. Namely, as technological merits at respective SME levels do not always guarantee commercial success, the government should make and effort to build systematic infrastructures including encouragement of M&A or technology trade, systematic support for protecting intellectual property, furtherance of business incubating and industrial clusters for strengthening academic-industrial network, and revitalization of technology financing, in order to make successful commercialization from technological success. Finally, the effort to innovate technology, R&D, for example, is essential to future national competitiveness, but its result is often prolonged. So the government needs continuous concern and funding for basic science, in order to maximize technological innovation capability. Indeed the government needs to examine continuously whether technological innovation capability or technological success leads satisfactorily to commercial success in market economic system. It is because, when the transition fails, it should be left to the government.
These studies were conducted to investigate nutrient sources and supplementary materials of synthetic compost media for Agaricus bisporus culture. Investigation were carried out to establish the optimum composition for compost of Agaricus bisporus methods of out-door fermentation and peakheating with rice straw as the main substrate of the media. The incidence and flora of harmful organisms in rice straw compost and their control were also studied. 1. When rice straw was used as the main substrate in synthetic compost as a carbon source. yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw, and the total nitrogen content was high in rice straw compost. 2. Since the morphological and physico-chemical nature of Japonica and Indica types of rice straw are greatly dissimilar. there were apparent differences in the process of compost fermentation. Fermentation of Indica type straw proceeded more rapidly with a shortening the compost period, reducing the water supply, and required adding of supplementary materials for producing stable physical conditions. 3. Use of barley straw compost resulted in a smaller crop compared with rice straw. but when a 50%, barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. 4. There were extremely high positive correlations between yield of Agaricus bisporus and the total nitrogen, organic nitrogen, amino acids, amides and amino sugar nitrogen content of compost. The mycerial growth and fruit body formation were severely inhibited by ammonium nitrogen. 5. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. 6. The supplementation of organic nutrient activated compost fermentation and increased yield of Agaricus bisporus. The best sources of organic nutrients were: perilla meal, sesame meal, wheat bran and poultry manure, etc. 7. Soybean meal, tobacco powder and glutamic acid fermentation by-products which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. B. When gypsum and zeolite were added to rice straw. physical deterioration of compost due to excess moisture and caramelization was observed. The Indica type of straw was more remarkable in increase of yield of Agricus bisporus by addition of supplementing materials than Japonica straw. 9. For preparing rice straw compost, the best mixture was prepared by 10% poultry manure, 5% perilla meal, 1. 2 to 1. 5% urea and 1% gypsum. At spring cropping, it was good to add rice bran to accelerate heat generation of the compost heap. 10. There was significantly high positive correlation (r=0.97) between accumulated temperature and the decomposition degree of compost during outdoor composting. The yield was highest at accumulated temperatures between 900 and
1. Introduction Today Internet is recognized as an important way for the transaction of products and services. According to the data surveyed by the National Statistical Office, the on-line transaction in 2007 for a year, 15.7656 trillion, shows a 17.1%(2.3060 trillion won) increase over last year, of these, the amount of B2C has been increased 12.0%(10.2258 trillion won). Like this, because the entry barrier of on-line market of Korea is low, many retailers could easily enter into the market. So the bigger its scale is, but on the other hand, the tougher its competition is. Particularly due to the Internet and innovation of IT, the existing market has been changed into the perfect competitive market(Srinivasan, Rolph & Kishore, 2002). In the early years of on-line business, they think that the main reason for success is a moderate price, they are awakened to its importance of on-line service quality with tough competition. If it's not sure whether customers can be provided with what they want, they can use the Web sites, perhaps they can trust their products that had been already bought or not, they have a doubt its viability(Parasuraman, Zeithaml & Malhotra, 2005). Customers can directly reserve and issue their air tickets irrespective of place and time at the Web sites of travel agencies or airlines, but its empirical studies about these Web sites for reserving and issuing air tickets are insufficient. Therefore this study goes on for following specific objects. First object is to measure service quality and service recovery of Web sites for reserving and issuing air tickets. Second is to look into whether above on-line service quality and on-line service recovery have an impact on overall service quality. Third is to seek for the relation with overall service quality and customer satisfaction, then this customer satisfaction and loyalty intention. 2. Theoretical Background 2.1 On-line Service Quality Barnes & Vidgen(2000; 2001a; 2001b; 2002) had invented the tool to measure Web sites' quality four times(called WebQual). The WebQual 1.0, Step one invented a measuring item for information quality based on QFD, and this had been verified by students of UK business school. The Web Qual 2.0, Step two invented for interaction quality, and had been judged by customers of on-line bookshop. The WebQual 3.0, Step three invented by consolidating the WebQual 1.0 for information quality and the WebQual2.0 for interactionquality. It includes 3-quality-dimension, information quality, interaction quality, site design, and had been assessed and confirmed by auction sites(e-bay, Amazon, QXL). Furtheron, through the former empirical studies, the authors changed sites quality into usability by judging that usability is a concept how customers interact with or perceive Web sites and It is used widely for accessing Web sites. By this process, WebQual 4.0 was invented, and is consist of 3-quality-dimension; information quality, interaction quality, usability, 22 items. However, because WebQual 4.0 is focusing on technical part, it's usable at the Website's design part, on the other hand, it's not usable at the Web site's pleasant experience part. Parasuraman, Zeithaml & Malhorta(2002; 2005) had invented the measure for measuring on-line service quality in 2002 and 2005. The study in 2002 divided on-line service quality into 5 dimensions. But these were not well-organized, so there needed to be studied again totally. So Parasuraman, Zeithaml & Malhorta(2005) re-worked out the study about on-line service quality measure base on 2002's study and invented E-S-QUAL. After they invented preliminary measure for on-line service quality, they made up a question for customers who had purchased at amazon.com and walmart.com and reassessed this measure. And they perfected an invention of E-S-QUAL consists of 4 dimensions, 22 items of efficiency, system availability, fulfillment, privacy. Efficiency measures assess to sites and usability and others, system availability measures accurate technical function of sites and others, fulfillment measures promptness of delivering products and sufficient goods and others and privacy measures the degree of protection of data about their customers and so on. 2.2 Service Recovery Service industries tend to minimize the losses by coping with service failure promptly. This responses of service providers to service failure mean service recovery(Kelly & Davis, 1994). Bitner(1990) went on his study from customers' view about service providers' behavior for customers to recognize their satisfaction/dissatisfaction at service point. According to them, to manage service failure successfully, exact recognition of service problem, an apology, sufficient description about service failure and some tangible compensation are important. Parasuraman, Zeithaml & Malhorta(2005) approached the service recovery from how to measure, rather than how to manage, and moved to on-line market not to off-line, then invented E-RecS-QUAL which is a measuring tool about on-line service recovery. 2.3 Customer Satisfaction The definition of customer satisfaction can be divided into two points of view. First, they approached customer satisfaction from outcome of comsumer. Howard & Sheth(1969) defined satisfaction as 'a cognitive condition feeling being rewarded properly or improperly for their sacrifice.' and Westbrook & Reilly(1983) also defined customer satisfaction/dissatisfaction as 'a psychological reaction to the behavior pattern of shopping and purchasing, the display condition of retail store, outcome of purchased goods and service as well as whole market.' Second, they approached customer satisfaction from process. Engel & Blackwell(1982) defined satisfaction as 'an assessment of a consistency in chosen alternative proposal and their belief they had with them.' Tse & Wilton(1988) defined customer satisfaction as 'a customers' reaction to discordance between advance expectation and ex post facto outcome.' That is, this point of view that customer satisfaction is process is the important factor that comparing and assessing process what they expect and outcome of consumer. Unlike outcome-oriented approach, process-oriented approach has many advantages. As process-oriented approach deals with customers' whole expenditure experience, it checks up main process by measuring one by one each factor which is essential role at each step. And this approach enables us to check perceptual/psychological process formed customer satisfaction. Because of these advantages, now many studies are adopting this process-oriented approach(Yi, 1995). 2.4 Loyalty Intention Loyalty has been studied by dividing into behavioral approaches, attitudinal approaches and complex approaches(Dekimpe et al., 1997). In the early years of study, they defined loyalty focusing on behavioral concept, behavioral approaches regard customer loyalty as "a tendency to purchase periodically within a certain period of time at specific retail store." But the loyalty of behavioral approaches focuses on only outcome of customer behavior, so there are someone to point the limits that customers' decision-making situation or process were neglected(Enis & Paul, 1970; Raj, 1982; Lee, 2002). So the attitudinal approaches were suggested. The attitudinal approaches consider loyalty contains all the cognitive, emotional, voluntary factors(Oliver, 1997), define the customer loyalty as "friendly behaviors for specific retail stores." However these attitudinal approaches can explain that how the customer loyalty form and change, but cannot say positively whether it is moved to real purchasing in the future or not. This is a kind of shortcoming(Oh, 1995). 3. Research Design 3.1 Research Model Based on the objects of this study, the research model derived is shows, Step 1 and Step 2 are significant, and mediation variable has a significant effect on dependent variables and so does independent variables at Step 3, too. And there needs to prove the partial mediation effect, independent variable's estimate ability at Step 3(Standardized coefficient
shows, Step 1 and Step 2 are significant, and mediation variable has a significant effect on dependent variables and so does independent variables at Step 3, too. And there needs to prove the partial mediation effect, independent variable's estimate ability at Step 3(Standardized coefficient
이메일무단수집거부
이용약관
제 1 장 총칙
제 2 장 이용계약의 체결
제 3 장 계약 당사자의 의무
제 4 장 서비스의 이용
제 5 장 계약 해지 및 이용 제한
제 6 장 손해배상 및 기타사항
Detail Search
Image Search
(β)