• Title/Summary/Keyword: Escherichia coli O157:H7

Search Result 373, Processing Time 0.025 seconds

Effects of Aerosolized Sanitizers of Different Droplet Sizes on Foodborne Pathogen Reduction

  • Kim, Young-Ho;Jo, Young-Jun;Kim, Yun-Ji;Koo, Min-Seon;Lee, Jong-Kyung;Oh, Se-Wook
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.664-668
    • /
    • 2008
  • The diffusivity of aerosol sanitizers may be determined by the weight and droplet size of the aerosol. To test the effects of droplet size, 2 types of aerosol sanitizers were prepared using different ultrasonic nebulizer frequencies (1.6 and 2.4 MHz) and their reduction activities were determined against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella typhimurium. A sodium hypochlorite aerosol was treated for 10, 30, or 60 min in a model aerosol cabinet. When the aerosol prepared by nebulizing at 1.6 MHz was treated for 30 min, a 0.2 log reduction was observed in E. coli O157:H7 and 0.3 log reductions were exhibited in L. monocytogenes and S. typhimurium, respectively. After 60 min, the 3 pathogens were reduced by 1.7, 0.6, and 0.8 log units, respectively. However, when the aerosol prepared by nubulizing at 2.4 MHz was treated, the microbes presented 1.6, 0.5, and 0.6 log reductions at 30 min, and 1.8, 0.9, and 1.1 log reductions at 60 min of treatment, respectively.

Comparison of a PCR Kit and a Selective Medium to Detect Pathogenic Bacteria in Eggs (PCR Kit와 선택배지를 이용한 계란의 병원성세균 검출 비교 평가)

  • Kim, Dong-Ho;Yun, Hye-Jeong;Song, Hyun-Pa;Lim, Sang-Yong;Jo, Min-Ho;Jo, Cheo-Run
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.965-970
    • /
    • 2009
  • PCR technology has been widely used to detect and quantify microbial pathogens in foodstuffs, because the technique is rapid, sensitive, and selective. In this study, detection of contaminating pathogenic bacteria on shells of chicken eggs was performed using both a commercial multiplex polymerase chain reaction (PCR) kit and a viable count method employing a selective medium. The PCR kit was capable of detecting Campylobacter jejuni, Escherichia coli O157:H7, Staphylococcus aureus, Bacillus cereus, Vibrio parahaemolyticus, Listeria monocytogenes, Yersinia enterocolitica, Salmonella species, and Shigella species. Using the PCR method, five bacterial species were detected from 30 samples (33.3%) of 90 batches of eggs commercially available in a market. PCR products from B. cereus, S. aureus, L. monocytogenes, Y. enterocolitica, and E. coli O157:H7 were detected, and the numbers and frequencies of positive samples were 17 (18.8%), 12 (13.3%), 15 (16.6%), 16 (17.7%),and 4 (4.4%), respectively. None of any Salmonella species, C. jejuni, V. parahaemolyticus, or Shigella species was detected in this study. The results of PCR testing were confirmed using a typical viable count method employing a selective medium. We suggest that the multiplex polymerase chain reaction (mPCR) assay is a rapid and reliable method for detection of pathogenic bacteria contaminating eggs.

Antipathogenic Activity of Bacillus amyloliquefaciens Isolated from Korean Traditional Rice Wine (막걸리로부터 분리된 Bacillus amyloliquefaciens 균주의 항균 활성)

  • Sim, Hyunsu;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.98-105
    • /
    • 2016
  • The presence of bacterial strains showing antagonistic activity to common pathogens found in a variety of fermented foods in Korea was explored. A bacterium inhibiting the growth of pathogens such as Aspergillus terreus (KCTC6178), A. flavus (KCTC6984), Staphylococcus aureus (KCCM12214), Escherichia coli O157:H7 (KCCM40406), Bacillus cereus (KCTC1012), Cryptococcus neoformans (ATCC208821), Salmonella typhimurium (ATCC19430), and Listeria monocytogenes (KCTC3569) was isolated from Makgeolli, a Korean traditional rice wine. The strain showing high antipathogenic activity was identified as B. amyloliquefaciens based on the nucleotide sequence of the 16S ribosomal RNA gene. Compared with B. amyloliquefaciens KCTC1660, whose genome has been sequenced, the isolate exhibited significantly low activities of starch-degrading enzymes and high resistance to high temperature and low pH.

Growth of Seeded Escherichia coli in Rewetted Cattle Waste Compost of Different Stages

  • Hanajima, D.;Kuroda, K.;Fukumoto, Y.;Haga, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.278-282
    • /
    • 2004
  • Compost is used mainly as an organic fertilizer, but it is also used as bedding material for cattle. Dairy cattle have been identified as a main reservoir of pathogenic Escherichia coli O157:H7. Further, E. coli is regarded as an environmental pathogen that causes bovine clinical mastitis. Hence, its growth in compost spread or compost bedding should be avoided. Physical and chemical conditions, available nutrients and microflora in compost change greatly during the composting process. Since pathogen growth in compost seems to be related to these changes, we assessed the possibility of E. coli growth in compost samples collected at 0, 7, 13, 22, 41, 190 and 360 d. Cattle waste composts with and without added tofu residue were collected from static piles and immediately air-dried. Compost samples were inoculated with a pure culture of E. coli, the moisture content was adjusted to 50%, and the samples were incubated for 5 d at $30^{\circ}C$. The numbers of E. coli in compost before and after incubation were determined by direct plating on Chromocult coliform agar. Almost all compost samples supported E. coli growth. Samples collected during or immediately after the thermophilic phase (day 7) showed the highest growth. Growth in samples more than 13 d old were not significantly different from those of aged compost samples. The addition of tofu residue gave a higher growth than its absence in younger samples collected prior to 13 d. To minimize the risk of environmental mastitis, the use of compost in the initial stage of the process is better avoided.

Improving the Microbial Safety of Fresh-Cut Endive with a Combined Treatment of Cinnamon Leaf Oil Emulsion Containing Cationic Surfactants and Ultrasound

  • Park, Jun-Beom;Kang, Ji-Hoon;Song, Kyung Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.503-509
    • /
    • 2018
  • Endive is widely consumed in a fresh-cut form owing to its rich nutritional content. However, fresh-cut vegetables are susceptible to contamination by pathogenic bacteria. This study investigated the antibacterial activities of the combined treatment of cinnamon leaf oil emulsion containing cetylpyridinium chloride or benzalkonium chloride (CLC and CLB, respectively) as a cationic surfactant and ultrasound (US) against Listeria monocytogenes and Escherichia coli O157:H7 on endive. The combined treatment of CLC or CLB with US reduced the population of L. monocytogenes by 1.58 and 1.47 log colony forming units (CFU)/g, respectively, and that of E. coli O157:H7 by 1.60 and 1.46 log CFU/g, respectively, as compared with water washing treatment. The reduction levels of both pathogens were higher than those observed with 0.2 mg/ml sodium hypochlorite. In addition, the combined treatment showed no effect on the quality of the fresh-cut endive (FCE). In particular, the degree of browning in FCE was less for the treatment group than for the control and water washing treatment groups. Thus, cationic surfactant-based cinnamon leaf oil emulsions combined with US may be an effective washing treatment for the microbial safety of FCE.

Inhibitory Effect of Aerosolized Commercial Sanitizers against Foodborne Pathogens (에어로졸 형태의 상업적 살균소독제의 병원성 미생물에 대한 저해효과 평가)

  • Lee, Sun-Young;Jung, Jin-Ho;Jin, Hyun-Ho;Kim, Young-Ho;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.4
    • /
    • pp.235-242
    • /
    • 2007
  • This study was conducted to investigate the effect of aerosolized chemical sanitizers on inhibiting foodborne pathogens such as Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes. Five domestic commercial sanitizers subjected to five groups of sanitizer (chlorine-based, hydrogen peroxide-based, Iodophor-based, quaternary ammonium-based, and alcohol-based sanitizers) were aerosolized by an aerosol generator into a model cabinet and treated in laboratory media containing three pathogens for 1 h at room temperature. Aerosolized hydrogen peroxide-based and quaternary ammonium-based sanitizers were effective at inhibiting levels of E. coli O157:H7 (ca. 4-9 log reductions) whereas other aerosolized sanitizers such as chlorine-based, Iodophor-based, and alcohol-based sanitizers did not significantly reduced the levels of E. coli O157:H7. For S. typhimurium, the only aerosolized hydrogen peroxide-based sanitizer was effective and resulted in ca. 5-9 log reduction. Aerosolized hydrogen peroxide-based, Iodophor-based, and quaternary ammonium-based sanitizers significantly reduced levels of L. monocytogenes and especially, aerosolized quaternary ammonium-based sanitizer was strongly effective to kill L. monocytogenes, resulted in higher than 8.8 log reduction. And there was no special trend in inhibitory efficacy of sanitizers aerosolized by 1.6 or 2.4 MHz aerosol generators. From these results, aerosolization has great potential for use in commercial applications however it's efficacy could be very different depending on type of sanitizers.

Antimicrobial Activity of Trifoliate Orange (Poncirus trifoliate) Seed Extracts on Gram-Negative Food-borne Pathogens

  • Kim, Seong-Yeong;Shin, Kwang-Soon
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.228-233
    • /
    • 2012
  • Trifoliate orange seed extracts (TSEs) were prepared from different solvents, water (TW), ethanol (TE), and n-hexane (TH), and assessed for their antimicrobial activities against six gram-negative food-borne pathogens (Escherichia coli KCTC 1039, Escherichia coli O157:H7 ATCC 43895, Salmonella Enteritidis ATCC 3311, Salmonella Typhimurium KCCM 11862, Shigella sonnei KCTC 2518, and Vibrio parahaemolyticus ATCC 17802). Among the tested TSEs, TE and TH showed a slight inhibition activity on V. parahaemolyticus ATCC 17802, but a good growth inhibition activity on Sal. Typhimurium KCCM 11862. TH and TE showed steady growth inhibition activity with increasing growth time after 6 hr when compared to the control (p<0.05). From these results, we confirmed the possibility of TH and TE as antimicrobial materials.

Bactericidal effect of 461 nm blue light emitting diode on pathogenic bacteria (461nm 청색 LED를 이용한 식중독세균의 살균효과)

  • Do, Jung Sun;Bang, Woo Suk
    • Food Science and Preservation
    • /
    • v.20 no.3
    • /
    • pp.419-423
    • /
    • 2013
  • The objective of this study was to characterize the bactericidal effect of 461nm visible-light LED on three common foodborne bacteria: Escherichia coli O157:H7, Staphylococcus aureus and Vibrio parahaemolyticus. Tests were conducted against pathogen strains that were treated with 461nm LED for 10 h at $15^{\circ}C$. The E. coli (ATCC 43894, ATCC 8739 and ATCC 35150) and the S. aureus (ATCC 27664, ATCC 19095 and ATCC 43300) had average reductions of 2.5, 6.6, 1.5, 2.5 and 2.0 log CFU/mL, respectively, after they were exposed for 10 h to 461nm LED light (p<0.05). In contrast, V. parahaemolyticus (ATCC 43969) had 6 log CFU/mL reductions after it was exposed for 4 h to 461nm LED light. The results showed that both the Gram-positive and Gram-negative bacteria were inactivated with 461nm LED light exposure. Also, the Gram-negative bacteria were more sensitive to the LED treatment than the Gram-positive bacteria. These results show the potential use of 461nm LED as a food preservation and application technology.

Anti-Biofilm Activity of Grapefruit Seed Extract against Staphylococcus aureus and Escherichia coli

  • Song, Ye Ji;Yu, Hwan Hee;Kim, Yeon Jin;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1177-1183
    • /
    • 2019
  • Grapefruit seed extract (GSE) is a safe and effective preservative that is used widely in the food industry. However, there are few studies addressing the anti-biofilm effect of GSE. In this study, the anti-biofilm effect of GSE was investigated against biofilm-forming strains of Staphylococcus aureus and Escherichia coli. The GSE minimum inhibitory concentration (MIC) for S. aureus and E. coli were $25{\mu}g/ml$ and $250{\mu}g/ml$, respectively. To investigate biofilm inhibition and degradation effect, crystal violet assay and stainless steel were used. Biofilm formation rates of four strains (S. aureus 7, S. aureus 8, E. coli ATCC 25922, and E. coli O157:H4 FRIK 125) were 55.8%, 70.2%, 55.4%, and 20.6% at $1/2{\times}MIC$ of GSE, respectively. The degradation effect of GSE on biofilms attached to stainless steel coupons was observed (${\geq}1$ log CFU/coupon) after exposure to concentrations above the MIC for all strains and $1/2{\times}MIC$ for S. aureus 7. In addition, the specific mechanisms of this anti-biofilm effect were investigated by evaluating hydrophobicity, auto-aggregation, exopolysaccharide (EPS) production rate, and motility. Significant changes in EPS production rate and motility were observed in both S. aureus and E. coli in the presence of GSE, while changes in hydrophobicity were observed only in E. coli. No relationship was seen between auto-aggregation and biofilm formation. Therefore, our results suggest that GSE might be used as an anti-biofilm agent that is effective against S. aureus and E. coli.