• 제목/요약/키워드: Erythrocyte

검색결과 741건 처리시간 0.028초

흰쥐에 Methanethiol 투여가 적혈구막 손상에 미치는 영향 (Effect of Methanethiol Administration on the Erythrocyte Damage in Rats)

  • 정소웅;윤종국
    • 한국환경보건학회지
    • /
    • 제19권4호
    • /
    • pp.83-89
    • /
    • 1993
  • To evaluate an effect of methanethiol on a cause of erythrocyte membrane damage in rats, methanethiol was given at 11.25 rag/100 g body weight, and after 4 hr, the animals were sacrifled, the activities of Na$^+$/K$^+$ ATPase, protein contents in partial purified erythrocyte membrane and erythrocyte indices were determined Concomitantly, in vitro, effect of methanethiol on the erythrocyte fragility, Na$^+$/K$^+$ ATPase activity and its kinetics in various concentration of substrate from the preincubated erythrocyte membrane with methanethiol were demonstrated. The spleen weight per body weight (%) and MCV of erythrocyte in methanethiol-treated rats were more increased than those in the control group. The Na$^+$/K$^+$ ATPase activities in erythrocyte membrane were more decreased in methanethiol-treated rats than those in the control group. The apply of 0.05 ng rat whole blood to the 0.24 mg/ng of methanethiol solution in isotonic condition showed the complete hemolysis. The Na$^+$/K$^+$ ATPase activity in preincubated erythrocyte membrane with methanethiol at 37$\circ$C showed the dual effect and the K$_m$ value of Na$^+$/K$^+$ ATPase was higher in the preincubated erythrocyte membrane with methanethiol than that in the preincubated erythrocyte membrane omitted the methanethiol. These results suggest that the methanethiol may induce the damage of rat's erythrocyte membrane due to a change in substrate binding affinity of Na$^+$/K$^+$ ATPase.

  • PDF

사람, 소, 말, 개의 적혈구막 단백의 전기 영동법에 의한 분석 - 적혈구 침강 속도와의 관계 - (Electrophoretic analysis of the major protein of erythrocyte membrane in man, bovine, horse, and dog: their relation to erythrocyte sedimentation rate)

  • 박영우
    • 대한수의학회지
    • /
    • 제41권1호
    • /
    • pp.21-28
    • /
    • 2001
  • The protein of the bovine, horse and dog erythrocyte membrane were analyzed by polyacrylamide gel eletrophoresis in sodium dodecyl sulfate and their relation to the sedimentation rate of animal erythrocytes were investigated by treating the erythrocytes with proteinases such as trypsin and chymotrypsin. Protein content in erythrocyte membrane was in human, in Jindo dog, in cattle and in horse, showing similar in among. The erythrocyte sedimentation rates bovine erythrocytes from Hostein and Korean native cattle were very slow compared with the human one(1/7 as slow as the human one) as reported previously. Although the general protein profiles of the bovine erythrocyte membranes were almost similar to that of human, bovine erythrocyte membranes showed one additional protein band, called band Q in this study, which migrated electrophoretically to the mid-position between band 2 and band 3 in human erythrocyte membranes. The erythrocyte sedimentation of race horse were very fast compared with the human one are reported previously. Although the general protein profiles of the race horse erythrocyte membranes were almost similar to that of human, band 3 content was showing higher in race horse(34.7%) than in human(25.3%). The general protein profile of the Jindo dog erythrocyte membrane was almost similar to the human patterns, Jindo dog erythrocyte membranes showed one absent protein band. It was band 7. The glycoprotein profiles of the bovine erythrocyte membranes revealed by periodic acid-Schiff(PAS) stain showed a marked difference from that of human. The PAS-1(glycophorin) and PAS-2(sialoglycoprotein) present in human erythrocyte membrane were almost absent from the bovine erythrocyte membranes showed a strong PAS-positive band near the origin of the electraphorograms, which is named as PAS-B in this study. The PAS-1 and PAS-2 present in human erythrocyte membrane were almost absent from race horse erythrocyte membranes, but PAS-2 was more in only race horse from that of human. The PAS-1 and PAS-2 were absolutely absent from the Jindo dog erythrocyte membrane. These results suggest the slow sedimentation rate of bovine erythrocytes is due in part to the presence of band Q protein fraction and PAS-B glycoprotein in the bovine erythrocytes, and that the fast sedimentation rate of race horse erythrocyte is due in part to the presence of more band 3 protein fraction and PAS-E glycoproteins in the race horse erythrocytes.

  • PDF

적혈구 침강속도에 대한 Westergren tube 각도, 온도 및 NaCl 농도가 미치는 영향 (The effect of Westergren tube angle, temperature and osmobility with the different percent of NaCl solution on erythrocyte sedimentation rate)

  • 김도균;김영홍;유창준
    • 대한수의학회지
    • /
    • 제36권1호
    • /
    • pp.75-82
    • /
    • 1996
  • Erythrocyte sedimentation rate is influenced by plasma protein, red cell itself and physiological conditions and it is clear that the measurement of erythrocyte sedimentation rate varies with technique and various environmental factors. The effect of temperature, angle of test tube, and osmobility with different percent of NaCl solution on erythrocyte sedimentation rate on sheep was determined by modified Westergren method. In sheep, as the angle of Westergren tube was decreased from $90^{\circ}$ to $45^{\circ}$, erythrocyte sedimentation rate was increased in both diluted plasma and NaCl solutions. As temperature was increased from $4^{\circ}C$ to $20^{\circ}C$ at $45^{\circ}$ angle. erythrocyte sedimentation rate was increased. In ruminants, this modified Westergren methods, erythrocyte 1 : plasma 9 instead of erythrocyte 4 : plasma 6(whole blood), enable them to have meanings as dog therefor, using this method, clinical can determine the erythrocyte sedimentation rate of ruminants for diagnosis. Because erythrocyte sedimentation rate was changed according to the angle of Westergren tube, temperature as erythrocyte diluted with NaCl, this study detected that the change of temperature, the angle of Westergren tube could change erythrocyte sedimentation rate by effecting red cell itself. The increase of osmobility owing to change of NaCl percent resulted in the decrease of rapid erythrocyte sedimentation rate. So this fact indicate that deformibility and the change of red cell volume have meaning in the change of erythrocyte sedimentation rate.

  • PDF

경주 적혈구막 단백의 전기영동법에 의한 분석 -빠른 적혈구 침강 속도와의 관계- (Electrophoretic analysis of the major proteins of race horse erythrocyte membrane: Their relation to fast erythrocyte sedimentation rate)

  • 박영우;이시영
    • 대한수의학회지
    • /
    • 제31권3호
    • /
    • pp.259-264
    • /
    • 1991
  • The proteins of the race horse erythrocyte membrane were analysed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate(SDS-PAGE), and their relations to the fast erythrocyte sedimentation rate(ESR) of the race horse were investigated. The erythrocyte sedimentation rate of race horse were very fast compared with the human one(33 times <$90^{\circ}-plastic-ESR/30m$> and 25 times <$90^{\circ}-micro-ESR/30m$> as fast as the human one) are reported previously. Although the general protein profiles of the race horse erythrocyte membranes were almost similar to that of human, band 3 content was showing higher in race horse (34.7%) than in human (25.3%). The glycoprotein profiles of the race horse erythrocyte membranes revealed by periodic acid Schiff's(PAS) stain showed a marked difference from that of human. The PAS-1(glycophorin) and PAS-2(sialoglycoprotein) present in human erythrocyte memo brane were almost absent from the Holstein and race horse erythrocyte membranes, but PAS-2 was more in only race horse from that of human. Instead, the bovine erythrocyte membranes showed a strong PAS-B near the origin of the electrophorograms and the race horse erythrocyte membranes showed a strong PAS-negative band near the end of the electrophorograms, which is named as PAS-E in this study. These results suggest that the fast sedimentation rate of race horse erythrocyte is due in part to the presence of more band 3 protein fraction and PAS-E glycoproteins in the race horse erythrocytes.

  • PDF

반추동물 적혈구막 단백의 전기영동법에 의한 분석 -낮은 적혈구침강속도와의 관계- (Electrophoretic analysis of the major proteins of ruminant erythrocyte membrane: Their relation to slow erythrocyte sedimentation rate)

  • 이방환;박영우
    • 대한수의학회지
    • /
    • 제29권4호
    • /
    • pp.445-455
    • /
    • 1989
  • The proteins of the ruminant erythrocyte membranes were analysed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and their relations to the slow erythrocyte sedimentation rate(ESR) of the ruminants were investigated by treating the erythrocytes with proteinases such as trypsin, chymotrypsin and pronase, and glycosidases such as neuraminidase and galactosidase. Protein content in the erythrocyte membrane was $2.85{\pm}0.28$ in human, $3.60{\pm}0.41$ in Korean cattle, $3.71{\pm}0.36$ in Holstein, $4.13{\pm}0.83$ in Korean native goat and $3.94{\pm}0.56mg/ml$ in sheep, showing higher in ruminant animals than in human(p<0.01). Although the general protein profiles of the ruminant erythrocyte membranes were almost similar to that of human, all the ruminant erythrocyte membranes showed one additional protein band, called band-Q in the previous report on proteins of bovine erythrocyte membrane, which migrated electrophoretically to the mid position between band-2 and band-3 in human erythrocyte membranes. The glycoprotein profiles of ruminant erythrocyte membranes revealed by periodic acid Schiff(PAS) stain showed a marked difference from that of human. The PAS-1(glycophorin) and PAS-2(sialoglycogrotein) present in human erythrocyte membranes were almost absent from the ruminant animals. Instead, a strong PAS-positive band near the origin of the electrophorograms, which was named as PAS-B in the previous report on proteins of bovine erythrocyte membranes, was shown in the ruminant animals except sheep. In addition, the erythrocyte membranes of Korean native goat and sheep showed a moderate PAS-negative band near the tracking dye of the electrophorograms, which was named as PAS-G in this study. In the erythrocyte treated with the enzymes, the migration of each protein fracture of erythrocyte membranes in response to each enzyme was diverse according to different species or breed of ruminant animals. Among others, band-Q present in ruminants was slightly or moderately decreased by trypsin-, chymotrypsin-, and pronase- treatments of the erythrocytes, but not only in sheep. It was particularly noticeable that PAS-B, a fraction of glycoprotein, present in ruminants except sheep, was better digested by proteinases than by glycosidases, showing remarkable increase(p<0.01) of the ESR in accord with complete digestion(disappearance) of the PAS-B band by pronase, trypsin or chymotrypsin treatment of erythrocytes. In sheep, there was almost no any response to the various enzymes in general protein and glycoprotein profiles of the erythrocyte membranes except PAS-G, which was markedly decreased by pronase treatment of the erythrocytes. Nevertheless, the ESRs were accelerated in erythrocytes treated with pronase, trypsin, chymotrypsin and neuraminidase. Erythrocyte osmotic fragility was increased in erythrocytes treated with only pronase among five enzymes in all the human and ruminant animals used in this study.

  • PDF

닭의 간과 적혈구의 핵 단백질의 비교연구 (A Comparsion of Nuclei Proteins in Chicken Liver and Erythrocyte)

  • 한준표
    • 한국식품영양과학회지
    • /
    • 제19권4호
    • /
    • pp.335-341
    • /
    • 1990
  • Nuclei proteins were purified from chick liver to homogeneity by means of acid extraction CM Sephadex c 25 column chromatography and Bio Rex 70 column chromatography, The molecular weight of liver Nuclei proteins 1 and 2 as estimated by electrophoresis on SDS-polycrylamide gel are 29000 and 27,000 respectively. These molecular weights are identical with those of Nuclei Proteins 1 and 2 isolated from chick erythrocyte. The liver and erythrocyte Nuclei Proteins also co-migrated in acetic acid-urea gel electrophoresis. Furthermore the anti-sera raised against liver Nuclei Proteins 1 and 2 cross-reacted with erythrocyte Nuclei Proteins 1 and 2 respectively, However the amino acid compositions of liver Nuclei Prooteins 1 and 2 were found to be different from those of corresponding erythrocyte Nuclei proteins ; the contents of serine and proline in liver Nuclei proteins were higherocyte Nuclei proteins ; the contents of serine and proline in liver Nuclei protesins were higher than those in erythrocyte Nuclei proteins while the content of lycsine in liver Nuclei proteins was lower than the erythrocyte Nuclei proteins, These results suggest that in spite of similarities in many respects the liver and erythrocyte Nuclei proteins in chicks and different proteins.

  • PDF

Prevalence of dog erythrocyte antigens 1 and 7 in eleven canine breeds in the Republic of Korea

  • Seung-Won, Yi;Eunju, Kim;Sang-Ik, Oh;Seok Il, Oh;Jong Seok, Kim;Ji-Hong, Ha;Bugeun, Lee;Jae Gyu, Yoo;Yoon Jung, Do
    • 한국동물위생학회지
    • /
    • 제45권4호
    • /
    • pp.269-275
    • /
    • 2022
  • Blood type in dogs is based on the antigen present on the red blood cell surface. Dog erythrocyte antigen 1 is a crucial red blood cell antigen in dogs, whereas the dog erythrocyte antigen 7 has been studied in limited dog breeds worldwide. To assess the prevalence of dog erythrocyte antigens 1 and 7 in 11 breeds in the Republic of Korea, 624 dog blood samples were examined for antigen detection. Overall, 520 dogs (83.3%) showed dog erythrocyte antigen 1 expression. The distribution varied from 50.0~100.0% according to the breed. Dog erythrocyte antigen 1-positive blood type was the highest in Chihuahua (100%), followed by Jindo dog (98.5%), and Sapsaree (95.3%). Dog erythrocyte antigen 7 was positive in 125 dogs (20.0%), and the positivity varied from 5.0~42.9% according to the breed. Dog erythrocyte antigen 7-positive blood type was the highest in Beagle (42.9%), followed by Chihuahua (37.5%), and Jindo dog (27.8%). The high prevalence of dog erythrocyte antigen 1 is because of the high proportion of Jindo dog and Sapsaree breeds that were mostly positive for the antigen. The high abundance of these breeds could be due to inbreeding and local breeding in the Republic of Korea. To our best knowledge, this study is the first to report on the prevalence of dog erythrocyte antigens 1 and 7 among various canine breeds in the Republic of Korea. The prevalence data obtained from this study may contribute to baseline information on veterinary transfusion medicine in small animal practice.

고혈압쥐 노화 적혈구에서의 Na, K-ATPase에 관한 연구 (Na, K-ATPase Activity in the Aged Erythrocytes of Hypertensive Rats)

  • 박창길;허강민;석정호;이재흔
    • 대한약리학회지
    • /
    • 제27권1호
    • /
    • pp.33-43
    • /
    • 1991
  • 고혈압백서(1-kidney, 1-clip-hypertensive rat)의 적혈구에서 노화 과정에 따른 Na, K-ATPase의 변동을 관찰하고저 노화적혈구를 분리한다음 세포막에서의 Na-pump 활성도 및 ouabain의 결합실험과 Rb의 세포내 유입실험을 시행하여 다음과 같은 결과를 얻었다. 1. 본 실험에 사용한 고혈압 백서의 혈압은 수축기 및 이완기 혈압이 165.5/119.0 mmHg로 유의하게 증가 하였다. 노화 적혈구의 평균용적(MCV)과 세포막 단백질 함량은 감소되고 혈색소치는 증가되었다. 2. 110 mM NaCl 및 10 mM KCI 존재하에서의 적혈구 세포막 Na, K-ATPase활성도는 대조군에 비해 고혈압군에서 억제 되었으며 양군 모두에서 노화에 의해 그활성도가 감소되었다. 3. 4 mM RbCl존재하에서 Ouabain에 의해 억제되는 Rb의 유입은 정상 및 고혈압군의 노화적혈구에서 약간 감소되었으며 고혈압군의 young erythrocyte에서는 오히려 약간 증가 되었다. 4. 16 mM RbCl 존재하에서 Ouabain에 의해 억제되는 Rb의 유입은 양군의 노화 적혈구에 서는 각군의 young erythrocyte에 비해 약 30-50% 감소되었으며, 고혈압군에서는 특히 young erythrocyte에서 정상군의 young erythrocyte에 비해 유의하게 감소되었다. 5. $0.13{\times}10^{-6}M$$1{\times}10^{-6}M$에서의 ouabain binding은 정상군의 노화적혈구에서는 young erythrocyte에 비해 약간 감소되었으나 고혈압군의 노화적혈구에서는 유의하게 감소되었다. 6. $6{\times}10^-6}M$$64{\times}10^-6M$ 에서의 ouabain binding은 양군의 노화 적혈구에서는 약간 감소되었지만 유의성은 없었으며 고혈압군의 young erythrocyte 및 노화적혈구에서는 정상군의 young erythrocyte및 노화 적혈구에 비해 유의하게 감소되었다. 이상의 결과로부터 (1) 고혈압쥐의 young erythrocyte에서는 low affinity의 Na-pump수의 감소및 molecular activity의 증가, (2) 정상쥐의 노화 적혈구에서는 molecular activity의 저하, (3) 고혈압쥐의 노화적혈구에서는 molecular activity의 저하 및 high affinity와 low affinity의 Na-pump수의 저하등에 의하여 Na-pump의 기능이 변동될 수 있을 것으로 추측된다.

  • PDF

우(牛) 적혈구막(赤血球膜) 단백(蛋白)의 전기영동법(電氣泳動法에) 의한 분석(分析) -낮은 적혈구(赤血球) 심강속도(沈降速度)와의 관계(關係)- (Electrophoretic analysis of the major proteins of bovine erythrocyte membrane: Their relation to slow erythrocyte sedimentation rate)

  • 박영우;이방환
    • 대한수의학회지
    • /
    • 제29권1호
    • /
    • pp.13-20
    • /
    • 1989
  • The proteins of the bovine erythrocyte membrane were analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and their relations to the slow sedimentation rate of bovine erythrocytes were investigated by treating the erythrocytes with trypsin. The erythrocyte sedimentation rates of bovine erythrocytes from Holstein and Korean native cattle were very slow compared with the human one (1/7 as slow as the human one) as reported previously. However, when human and Holstein erythrocytes were treated with trypsin (0.2 and 0.5 mg/ml) for 1 hour at ${37^{\circ}C}$, their sedimentation rates were markedly accelerated while the sedimentation rate of Korean native cattle's erythrocytes were not affected. Although the general protein profiles of the bovine erythrocyte membranes were almost similar to that of human, bovine erythrocyte membranes showed one additional protein band, called band Q in this study, which migrated electrophoretically to the mid-position between band 2 and band 3 in human erythrocyte membranes. Treatment of Holstein and human erythrocytes with trypsin caused a decrease or disapperance of the band Q from the erythrocyte membrane. Although the band Q in Korean native cattle's erythroyte membrane was decreased by trypsin treatment of the erythrocytes, the magnitude of the decrement was not so pronounced as in the case of human and Holstein erythrocytes. The glycoprotein profiles of the bovine erythrocyte membranes revealed by periodic acid-Schiff stain showed a marked difference from that of human. The PAS-1 (glycophorin) and PAS-2 (sialoglycoprotein) present in human erythrocyte membrane were almost absent from the bovine erythrocyte membranes. Instead, the bovine erythrocyte membranes showed a strong PAS-positive band near the origin of the electrophorograms, which is named as PAS-B in this study. The PAS-B band was disappered completely by the trypsin treatment of Holstein erythrocytes whereas the PAS-B band in Korean native cattle's erythrocyte membrane still remained after the trypsin treatment. The trypsin treatment of Korean native cattle's erythrocytes, however, led to the appearance of small molecular weight peptides, indicating that the high molecular weight glycoproteins were degraded by trypsin as in human and Holstein ones. These results suggest that the slow sedimentation rate of bovine erythrocytes is due in part to the presence of band Q protein fraction and PAS-B glycoprotein in the bovine erythrocytes.

  • PDF

MULTI-SHAPE ERYTHROCYTE IMAGING AND THEIR DEFORMABILITY ANALYSIS IN A MICROFLUIDIC ENVIRONMENT

  • Jayavanth, Sanjay;Pak, Bock-Choon
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2791-2796
    • /
    • 2007
  • In their long journey through the cardiovascular circuit, erythrocytes are coerced to shape transform and assume different shapes on account of varying flow conditions in different blood vessels. The present work was aimed to visualize these erythrocyte shape transformations by an invitro microcirculatory model, and assess multi-shape erythrocyte deformability. The model uses an in-house fabricated, inexpensive disposable micro flow channel to mimic certain invivo conditions and a fast frame video microscopic system for imaging the shape changes in erythrocytes. Results show the multi-shape transformation of erythrocyte christened as discoidal shape, the asymmetrically deformed 'hat' and 'bullet-like' shapes, and the axially deformed 'slipper' and 'spindle-like' shapes. Specific erythrocyte showed the shape transition and transformation while passing through the observed window. The obtained erythrocyte shapes very analyzed for deformability index using image processing techniques that varied significantly (p <0.001) for different shapes as compared with the resting shape.

  • PDF