• Title/Summary/Keyword: Error-Sensitivity

Search Result 818, Processing Time 0.024 seconds

Application of the Concept of a sSnsitivity Linkage for the Analysis of Mechanical Error in 4-Bar Mechanism (민감도 해석기구를 이용한 4절기구의 기계적 오차해석)

  • Sin, Jae-Kyun;Choi, Hong-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1508-1515
    • /
    • 1996
  • The method of utilizing sensitivity linkages for the analysis of mechanical errors are proposed. As sources of the mechanical error, tolerances in the link length and clearances in thejoints are considered. It is demonstrated that the problem of calculating mechanical errors of a 4-bar mechanism can be transformed into a problem of conventeional velocity analysis of a sensitivity linkage. As a result of the present study, it is found and proved that the mechanical error of the output angle in the 4-Bar mechaism is represented as a simple harmonic function with respect to the relative position of the pin on the clearance circle. Also the vector representing the mechanical error of a coupler point makes, in general, an ellipse as the relative angle varies on the clearance circle. With these results we can better identify the characteristic of the mechanical errors in linkages.

A study on Quadrature error Reduction of Design Methodology in a Single Drive 3-Axis MEMS Gyroscope (단일 구동 3축 MEMS자이로스코프의 구적 오차 저감을 위한 설계 기법에 관한 연구)

  • Park, Ji Won;Din, Hussamud;Lee, Byeung Leul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.132-137
    • /
    • 2022
  • In this paper, we have studied the quadrature error reduction for the single drive 3-axis MEMS Gyroscope. There was a limitation of the previous study which is the z-axis quadrature error was large. To reduce this value, design methodologies were presented. And the methodologies included a different mesh application, z-rate spring structure change, and mass compensation for balancing of the structure. We conducted the modal analysis, drive mode analysis and sense mode analysis using COMSOL Multiphysics. As a result, a drive resonant frequency was 26003 Hz, with the x-sense, y-sense, z-sense being 26749 Hz, 26858 Hz, 26920 Hz, respectively. And the Mechanical sensitivity was computed at 2000 degrees per second(dps) input angular rate while the sensitivity for roll, pitch, and yaw was computed 0.011, 0.012, and 0.011 nm/dps respectively. And z-axis quadrature error was successfully improved, 2.78 nm to 0.95 nm, which the improvement rate was about 66 %.

Analysis of wind farm power prediction sensitivity for wind speed error using LSTM deep learning model (LSTM 딥러닝 신경망 모델을 이용한 풍력발전단지 풍속 오차에 따른 출력 예측 민감도 분석)

  • Minsang Kang;Eunkuk Son;Jinjae Lee;Seungjin Kang
    • Journal of Wind Energy
    • /
    • v.15 no.2
    • /
    • pp.10-22
    • /
    • 2024
  • This research is a comprehensive analysis of wind power prediction sensitivity using a Long Short-Term Memory (LSTM) deep learning neural network model, accounting for the inherent uncertainties in wind speed estimation. Utilizing a year's worth of operational data from an operational wind farm, the study forecasts the power output of both individual wind turbines and the farm collectively. Predictions were made daily at intervals of 10 minutes and 1 hour over a span of three months. The model's forecast accuracy was evaluated by comparing the root mean square error (RMSE), normalized RMSE (NRMSE), and correlation coefficients with actual power output data. Moreover, the research investigated how inaccuracies in wind speed inputs affect the power prediction sensitivity of the model. By simulating wind speed errors within a normal distribution range of 1% to 15%, the study analyzed their influence on the accuracy of power predictions. This investigation provided insights into the required wind speed prediction error rate to achieve an 8% power prediction error threshold, meeting the incentive standards for forecasting systems in renewable energy generation.

Parameter Sensitivity Analysis of Autonomous Robot Vehicle for Trajectory Error and Friction Force (자율 주행 반송차의 궤적 오차와 마찰력에 대한 매개 변수의 민감도 해석)

  • 김동규;박기환;김수현;곽윤근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.115-126
    • /
    • 1996
  • In order to obtain the principal design data for developing the Autonomous Robot Vehicle(ARV), Sensitivity analysis on the trajectory error and friction force with respect to the dynamic parameters is performed. In the straight motion, the trajectory error has been proved to be much affected by the mass variance of the ARV while the lateral friction force is much affected by the location of the mass center. In the curved motion, the effect of mass and moment of inertia is considered importantly. In addition, the lateral offset gives more effect than the geometric dimension of the ARV on the trajectory errors and friction force.

  • PDF

SENSITIVITY ANALYSIS IN FUZZY RELIABILITY ANALYSISA

  • Onisawa, Takehisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.764-769
    • /
    • 1988
  • In this paper the failure possibility and the error possibility are used to represent reliability of a technical component and that of a human operator, respectively. The failure possibility and the error possibility are fuzzy sets on the interval [0,1]. In a man-machine system, reliability of the technical component and that of the human operator are usually affected by many factors, e.g., the environment in which a machine is operated, psychological stress of the human operator, etc. The possibility is derived from not only the failure or the error rate but also estimates of these factors. The fuzzy reasoning plays an important role in the derivation. The reliability analysis is performed by the use of the possibility obtained by the present method. Moreover this paper discusses the sensitivity analysis which evaluates what extent the change of the estimation of each factor has an influence on reliability of a man-machine system. The important factors to be ameliorated are shown through the sensitivity analysis.

  • PDF

A Study on the Oil Temperature Control Errors of Precision Oil Coolers (정밀 오일냉각기의 오일온도 제어오차에 관한 연구)

  • 이상호;이찬홍;김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.451-454
    • /
    • 2003
  • The Oil Coolers is very important unit for the stable thermal performance in machine tools, semiconductor equipments and high precision measuring systems. To select a proper oil cooler for the temperature control of core unit in a machine, not only cooling ability but also static and dynamic sensitivity of temperature sensors are considered. In this paper, the relationship between cooling ability and inflow oil temperature is identified. The cooling ability is increased with the increase of inflow oil temperature. The oil temperature control errors of a cooler are influenced by mainly sensitivity of temperature sensors and heating velocity in a machine. The validity of error cause analysis for temperature control is proved by real cooling experiments with inflow and outflow temperature sensors.

  • PDF

A Study on Mobile Target Estimation Resolution using Effects of Model Errors and Sensitivity Analysis

  • Lee, Kwan Hyeong
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.21-23
    • /
    • 2013
  • The antenna pattern in this case has a main beam pointed in the desired signal direction, and has a null in the direction of the interference.The conventional antenna pattern concepts of beam width, side lobes, and main beams are not used, as the antenna weights are designed to achieve a set performance criterion such as maximization of the output SNR.A new direction of arrival estimation method using effects of model errors and sensitivity analysis is proposed. Two subspaces are used to form a signal space whose phase shift between the reference signal and its effects of model error signal. Through simulation, the performance showed that the proposed method leads to increased resolution and improved accuracy of DOA estimation relative to those achieved with existing method. Since a desired signal is obtained after interference rejection through correction effects of model error, the effect of channel interference on the estimation is significantly reduced.

An Error Sensitivity Analysis of Tape Traveling Path due to Geometric Variations of Tape Transport Elements of VHS VTR (VHS 방식 VTR 주행계 요소의 기하학적 배치 변동에 따른 주행경로의 오차민감도 해석)

  • 최진호;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2655-2663
    • /
    • 1993
  • In order to evaluate the relative significance of tolerance management of various elements in a VHS VTR tape transport system, the effect of geometric variations of the elements from standard design values on the tape traveling path is studied. The tape is modeled as a string and each element in the tape transport system is modeled as a cylinder whose radius, position vector and orientation vector are specified. An numerical algorithm is proposed to find the coordinates of tape entry points and tape exit points for the elements from which the tape traveling path can be completely described. By using the suggested algorithm, an error sensitivity analysis of tape traveling path due to the geometric variations of tape transport elements is performed for a particular model in the market and the elements demanding relatively strict tolerance management are identified.

Analysis of the Difference in Pilot Error by Using the Signal Detection Theory (신호탐지론을 활용한 조종사 Error 차이 분석)

  • Kwon, Oh-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • This study was to analyze the difference in pilot error by using the Signal Detection Theory. The task was to detect the targeted aircraft(signal) which is different shape from many other aircraft(noise). From the two experiments, we differentiated the task difficulty followed by change in noise stimuli. Experiment 1 was to search the signal stimuli(fighter plane) while the noise stimuli(cargo plane) were increasing. The results from the Experiment 1 showed the tendency to decrease the hit rate by increasing the number of noise stimuli. However, the false alarm rate was not increased. The sensitivity(d') showed quite high. In Experiment 2, a disturbance stimulus(helicopter) was added to noise stimuli. The result was generally similar to those of Experiment 1. However, the hit rate was lower than that of Experiment 1.

Receive Sensitivity Improvement of Wavelength Division Multiplexing System (파장 분할 다중화 시스템의 수신감도 개선)

  • Kim, Sun-Youb;Park, Hyoung-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.579-585
    • /
    • 2006
  • In this study, we analysis an optical receivers using the optical preamplifier in a spectrum-sliced WDM systems. The average numbers of photons/bit, for an $10^{-9}$ error probability, counts using the OOK and FSK transmission. As a result, the theoretical sensitivity for PIN receiver and optical preamplifier receiver are approximately $9.2\times10^4\;and\;7.2\times10^2$ in the m=20, respectively. Also, the average numbers of photons/bit, for and given error probability, theoretical receiver sensitivity for Gaussian method and k-square method are approximately $9\times10^2\;and\;2.16\times10^2$ in the m=40, respectively. And the average numbers of photons/bit, for an given error probability, theoretical receiver sensitivity, OOK and FSK transmission are approximately $1.9\times10^2\;and\;3.1\times10^2$ in the m=20, respectively.