• Title/Summary/Keyword: Error variables

Search Result 1,347, Processing Time 0.028 seconds

Analysis of Time Series Models for Ozone Concentration at Anyang City of Gyeonggi-Do in Korea (경기도 안양시 오존농도의 시계열모형 연구)

  • Lee, Hoon-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.604-612
    • /
    • 2008
  • The ozone concentration is one of the important environmental issue for measurement of the atmospheric condition of the country. This study focuses on applying the Autoregressive Error (ARE) model for analyzing the ozone data at middle part of the Gyeonggi-Do, Anyang monitoring site in Korea. In the ARE model, eight meteorological variables and four pollution variables are used as the explanatory variables. The eight meteorological variables are daily maximum temperature, wind speed, amount of cloud, global radiation, relative humidity, rainfall, dew point temperature, and water vapor pressure. The four air pollution variables are sulfur dioxide $(SO_2)$, nitrogen dioxide $(NO_2)$, carbon monoxide (CO), and particulate matter 10 (PM10). The result shows that ARE models both overall and monthly data are suited for describing the oBone concentration. In the ARE model for overall ozone data, ozone concentration can be explained about 71% to by the PM10, global radiation and wind speed. Also the four types of ARE models for high level of ozone data (over 80 ppb) have been analyzed. In the best ARE model for high level of ozone data, ozone can be explained about 96% by the PM10, daliy maximum temperature, and cloud amount.

Improving Deep Learning Models Considering the Time Lags between Explanatory and Response Variables

  • Chaehyeon Kim;Ki Yong Lee
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.345-359
    • /
    • 2024
  • A regression model represents the relationship between explanatory and response variables. In real life, explanatory variables often affect a response variable with a certain time lag, rather than immediately. For example, the marriage rate affects the birth rate with a time lag of 1 to 2 years. Although deep learning models have been successfully used to model various relationships, most of them do not consider the time lags between explanatory and response variables. Therefore, in this paper, we propose an extension of deep learning models, which automatically finds the time lags between explanatory and response variables. The proposed method finds out which of the past values of the explanatory variables minimize the error of the model, and uses the found values to determine the time lag between each explanatory variable and response variables. After determining the time lags between explanatory and response variables, the proposed method trains the deep learning model again by reflecting these time lags. Through various experiments applying the proposed method to a few deep learning models, we confirm that the proposed method can find a more accurate model whose error is reduced by more than 60% compared to the original model.

Hybrid Fuzzy Controller for DTC of Induction Motor Drive (유도전동기 드라이브의 DTC를 위한 하이브리드 퍼지제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.22-33
    • /
    • 2011
  • An induction motor operated with a conventional direct self controller(DSC) shows a sluggish response during startup and under changes of torque command. Fuzzy logic controller(FLC) is used in conjection with DSC to minimize these problems. A FLC chooses the switching states based on a set of fuzzy variables. Flux position, error in flux magnitude and error in torque are used as fuzzy state variables. Fuzzy rules are determinated by observing the vector diagram of flux and currents. This paper proposes hybrid fuzzy controller for direct torque control(DTC) of induction motor drives. The speed controller is based on adaptive fuzzy learning controller(AFLC), which provide high dynamics performances both in transient and steady state response. Flux position, error in flux magnitude and error in torque are used as FLC state variables. The speed is estimated with model reference adaptive system(MRAS) based on artificial neural network(ANN) trained on-line by a back-propagation algorithm. This paper is controlled speed using hybrid fuzzy controller(HFC) and estimation of speed using ANN. The performance of the proposed induction motor drive with HFC controller and ANN is verified by analysis results at various operation conditions.

Solar radiation forecasting by time series models (시계열 모형을 활용한 일사량 예측 연구)

  • Suh, Yu Min;Son, Heung-goo;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.785-799
    • /
    • 2018
  • With the development of renewable energy sector, the importance of solar energy is continuously increasing. Solar radiation forecasting is essential to accurately solar power generation forecasting. In this paper, we used time series models (ARIMA, ARIMAX, seasonal ARIMA, seasonal ARIMAX, ARIMA GARCH, ARIMAX-GARCH, seasonal ARIMA-GARCH, seasonal ARIMAX-GARCH). We compared the performance of the models using mean absolute error and root mean square error. According to the performance of the models without exogenous variables, the Seasonal ARIMA-GARCH model showed better performance model considering the problem of heteroscedasticity. However, when the exogenous variables were considered, the ARIMAX model showed the best forecasting accuracy.

Industrial application of gross error estimation and data reconciliation to byproduction gases in iron and steel making plants

  • Yi, Heui-Seok;Hakchul Shin;Kim, Jeong-Hwan;Chonghun Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.69.2-69
    • /
    • 2002
  • Process measurements contain random and gross errors and the size estimation of gross errors is required for production accounting. Mixed integer programming technique had been applied to identify and estimate the gross errors simultaneously. However, the compensate model based on mixed integer programming used all measured variables or spanning tree as gross error candidates. This makes gross error estimation problem combinatorial or computationally expensive. Mixed integer programming with test statistics is proposed for computationally inexpensive gross error identification /estimation. The gross error candidates are identified by measurement test and the set of gross error candidates are...

  • PDF

Error Analysis of Initial Fine Alignment for Non-leveling INS (경사각을 갖는 관성항법시스템 초기 정밀정렬의 오차 분석)

  • Cho, Seong-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.595-602
    • /
    • 2008
  • In this paper, performance of the initial alignment for INS whose attitude is not leveled is investigated. Observability of the initial alignment filter is analyzed and estimation errors of the estimated state variables are derived. First, the observability is analyzed using the rank test of observability matrix and the normalized error covariance of the Kalman filter based on the 10-state model. In result, it can be seen that the accelerometer biases on horizontal axes are unobservable. Second, the steady-state estimation errors of the state variables are derived using the observability equation. It is verified that the estimates of the state variables have errors due to the unobservable state variables and the non-leveling tilt angles of a vehicle containing the INS. Especially, this paper shows that the larger the tilt angles of the vehicle are, the larger the estimation errors corresponding to the sensor biases are. Finally, it is shown that the performance of the 8-state model excepting the accelerometer biases on horizontal axes is better than that of the 10-state model in the initial alignment by simulation.

Effects of Bank Macroeconomic Indicators on the Stability of the Financial System in Indonesia

  • VIPHINDRARTIN, Sebastiana;ARDHANARI, Margaretha;WILANTARI, Regina Niken;SOMAJI, Rafael Purtomo;ARIANTI, Selvi
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.647-654
    • /
    • 2021
  • This study examines the non-performing loans of rural banks and macroeconomic factors in Indonesia, including inflation, exchange rates, and interest rates. Theoretically, the existence of erratic macroeconomic conditions can affect the level of non-performing credit risk in rural credit banks in Indonesia. The effect of macroeconomic conditions on non-performing loans has a different response for each economic sector. The main objective of this study is to determine the effect of macroeconomic factors (inflation, exchange rates, and interest rates) and bank-specific factors (credit) on the Non-Performing Loans (NPL) of Rural Banks in Indonesia for the period from January 2015 to December 2018. This study uses a Vector Error Correction Model (VECM) estimation to determine the effect of independent variables consisting of macroeconomic factors and bank-specific factors. Based on the estimation results of the Vector Error Correction Model, three variables that have a positive and significant effect on long-term non-performing loans are credit, inflation, and interest rates. Meanwhile, in the short term, there are only two variables that have a positive and significant effect on non-performing loans, namely, credit and interest rates. Inflation and exchange rate variables have a negative and insignificant effect on bad credit in the short term.

PD+I-type fuzzy controller using Simplified Indirect Inference Method

  • Kim, Ji-Hoon;Jeon, Hae-Jin;Chun, Kyung-Han;Park, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.179.5-179
    • /
    • 2001
  • Generally, while PD-type fuzzy controller has good performance in transient period, it has uniform steady state error of response. To improve limitations of PD-type fuzzy controller, we propose a new fuzzy controller to improve the performance of transient response and to eliminate the steady state error of response. In this paper, PD-type fuzzy controller is used a simplified indirect inference method(SIIM). When the SIIM is applied, the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. The outputs of this controller are the output calculated by PD-type fuzzy controller and the accumulated error scaling factor. Here, the accumulated error scaling factor is adjusted by fuzzy rule according to the system state variables. To show the usefulness of the proposed controller, it is applied to 0-type 2nd-order linear system.

  • PDF

The Research on the Modeling and Parameter Optimization of the EV Battery (전기자동차 배터리 모델링 및 파라미터 최적화 기법 연구)

  • Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.227-234
    • /
    • 2020
  • This paper presents the methods for the modeling and parameter optimization of the electric vehicle battery. The state variables of the battery are defined, and the test methods for battery parameters are presented. The state-space equation, which consists of four state variables, and the output equation, which is a combination of to-be-determined parameters, are shown. The parameter optimization method is the key point of this study. The least square of the modeling error can be used as an initial value of the multivariable function. It is equivalent to find the minimum value of the error function to obtain optimal parameters from multivariable function. The SIMULINK model is presented, and the 10-hour full operational range test results are shown to verify the performance of the model. The modeling error for 25 degrees is approximately 1% for full operational ranges. The comments to enhance modeling accuracy are shown in the conclusion.

Optimal Restrictions on Regression Parameters For Linear Mixture Model

  • Ahn, Jung-Yeon;Park, Sung-Hyun
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.3
    • /
    • pp.325-336
    • /
    • 1999
  • Collinearity among independent variables can have severe effects on the precision of response estimation for some region of interest in the experiments with mixture. A method of finding optimal linear restriction on regression parameter in linear model for mixture experiments in the sense of minimizing integrated mean squared error is studied. We use the formulation of optimal restrictions on regression parameters for estimating responses proposed by Park(1981) by transforming mixture components to mathematically independent variables.

  • PDF