• Title/Summary/Keyword: Error types of students in proof

Search Result 4, Processing Time 0.018 seconds

A Study on Error Analysis and Correction Method in Proof Problems of Matrix (행렬의 명제 문제에 대한 오류 분석 및 교정 지도 방안에 관한 연구)

  • Kim, Hye-Jin;Kim, Won-Kyung
    • The Mathematical Education
    • /
    • v.49 no.2
    • /
    • pp.161-174
    • /
    • 2010
  • The purpose of the study is to analyze various types of errors appeared in true-false proof problems of matrix and to find out correction method. In order to achieve this purpose, error test was conducted to the subject of 87 second grade students who were chosen from D high schoool. It was shown from this test that the most frequent error type was caused by the lack of understanding about concepts and essential facts of matrix(35.3%), and then caused by the invalid logically reasoning (27.4%), and then caused by the misusing conditions(18.7%). Through three hours of correction lessons with 5 students, the following correction teaching method was proposed. First, it is stressed that the operation rules and properties satisfied in real number system can not be applied in matrix. Second, it is taught that the analytical proof method and the reductio ad absurdum method are useful in the proof problem of matrix. Third, it is explained that the counter example of E=$\begin{pmatrix}1\;0\\0\;1 \end{pmatrix}$, -E should be found in proof of the false statement. Fourth, it is taught that the determinant condition should be checked for the existence of the inverse matrix.

An Influence of GSP to Learning Process of Proof of Middle School Students: Case Study (GSP가 중학생들의 증명학습에 미치는 영향: 사례연구)

  • Shin, Yu-Kyoung;Kang, Yun-Soo;Jung, In-Chul
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.1
    • /
    • pp.55-68
    • /
    • 2008
  • In this paper, we investigated difficulties that middle school students face in the teaming process of proof, and then inquired how does learning of proof using GSP ease students' difficulties. Throughout the inspection, we identified that students have difficulties in understanding process of premise and conclusion, use of notation, process of reasoning. And we identified, throughout learning process of proof using GSP, students can be feedbacked for their guess or reasoning, generalize the special case to general properties and have attitude checking ideas needed in proof by themselves.

  • PDF

An Analysis of Types of Errors Found in the Proofs for Geometric Problems - Based on Middle School Course (중학교 기하 증명의 서술에서 나타나는 오류의 유형 분석)

  • Hwang, Jae-Woo;Boo, Deok Hoon
    • The Mathematical Education
    • /
    • v.54 no.1
    • /
    • pp.83-98
    • /
    • 2015
  • By analysing the examination papers for geometry, we classified the errors occured in the proofs for geometric problems into 5 main types - logical invalidity, lack of inferential ability or knowledge, ambiguity on communication, incorrect description, and misunderstanding the question - and each types were classified into 2 or 5 subtypes. Based on the types of errors, answers of each problem was analysed in detail. The errors were classified, causes were described, and teaching plans to prevent the error were suggested case by case. To improve the students' ability to express the proof of geometric problems, followings are needed on school education. First, proof learning should be customized for each types of errors in school mathematics. Second, logical thinking process must be emphasized in the class of mathematics. Third, to prevent and correct the errors found in the proofs for geometric problems, further research on the types of such errors are needed.

A Study on the Types of Mathematical Justification Shown in Elementary School Students in Number and Operations, and Geometry (수와 연산.도형 영역에서 초등 3학년 학생들의 수학적 정당화 유형에 관한 연구)

  • Seo, Ji-Su;Ryu, Sung-Rim
    • Communications of Mathematical Education
    • /
    • v.26 no.1
    • /
    • pp.85-108
    • /
    • 2012
  • The comprehensive implication in justification activity that includes the proof in the elementary school level where the logical and formative verification is hard to come has to be instructed. Therefore, this study has set the following issues. First, what is the mathematical justification type shown in the Number and Operations, and Geometry? Second, what are the errors shown by students in the justification process? In order to solve these research issues, the test was implemented on 62 third grade elementary school students in D City and analyzed the mathematical justification type. The research result could be summarized as follows. First, in solving the justification type test for the number and operations, students evenly used the empirical justification type and the analytical justification type. Second, in the geometry, the ratio of the empirical justification was shown to be higher than the analytical justification, and it had a difference from the number and operations that evenly disclosed the ratio of the empirical justification and the analytical justification. And third, as a result of analyzing the errors of students occurring during the justification process, it was shown to show in the order of the error of omitting the problem solving process, error of concept and principle, error in understanding the questions, and technical error. Therefore, it is prudent to provide substantial justification experiences to students. And, since it is difficult to correct the erroneous concept and mistaken principle once it is accepted as familiar content that it is required to find out the principle accepted in error or mistake and re-instruct to correct it.