• 제목/요약/키워드: Error ratio

검색결과 2,620건 처리시간 0.031초

전기용량 부담을 이용한 전압변성기 비교 측정 시스템의 비오차 및 위상각 오차의 직선성 평가기술 (Evaluation Technique of Linearity of Ratio Error and Phase Angle Error of Voltage Transformer Comparison Measurement System Using Capacitor Burden)

  • 정재갑;김한준;권성원;김명수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권6호
    • /
    • pp.274-278
    • /
    • 2005
  • Voltage transformer(VT) comparison measurement system is usually used for measurements of ratio error and phase angle error of VT made in industry. Both ratio error and phase angle error in VT are critically influenced by values of burden of VT used. External burden effects on both ratio error and phase angle error in VT are theoretically calculated. From the theoretical calculation, a method of evaluation for linearity of ratio error and phase angle error in VT measurement system have been developed using the standard capacitive burdens, with negligible dissipation factor less than 10$^{-4}$. These burden consists of five standard capacitors, with nominal capacitance of 1.1 $\mu$F, 1 $\mu$F, 0.1 $\mu$F, 0.01 $\mu$F, 0.001 $\mu$F. The developed method has been applied in VT measurement system of industry, showing in good consistency and linearity within 0.001 $\%$ between theoretical and measured values.

넓은 범위의 비오차를 갖는 전압변성기를 이용한 계기용 변성기 비교 측정 장치의 비오차 직선성 평가기술 (Evaluation Technique for Linearity of Ratio Error of Instrument Transformer Comparator Using Voltage Transformer with Wide Range of Error Ratios)

  • 정재갑;권성원;김한준;박영태;김명수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권2호
    • /
    • pp.66-70
    • /
    • 2005
  • Linearity of ratio error of instrument transformer comparator has been tested using wide ratio error voltage transformer(VT) with the ratio errors in the range of -3 % to 3 %. The technique is the method for evaluation of the linearity for instrument transformer comparator by comparing both the theoretical and experimental values in wide ratio error VT. The developed method has been successfully applied for calibration and correction in instrument transformer comparator belonging to industry.

전압변성기 비교 측정 장치의 비오차 및 위상각 오차의 직선성 평가기술 (Evaluation Technique of Linearity of Ratio Error and Phase Angle Error of Voltage Transformer Comparison Measurement Equipment)

  • 정재갑;박영태;권성원
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권9호
    • /
    • pp.470-474
    • /
    • 2004
  • Both ratio error and phase angle error in voltage transformer(VT) depend on values of burden of VT used. A method of evaluation for linearity of ratio error and phase angle error in VT measurement equipment have been developed using the standard resistance burdens, with negligible AC-DC resistance difference less than $10^-6$. These burden consists of five standard resistors, with nominal resistance of 100 $\Omega$, 1 k$\Omega$, 10 k$\Omega$, 100 k$\Omega$, and 1 M$\Omega$. The developed method has been applied in VT measurement equipment of industry and the validity of the developed method has been verified by showing the consistency of the result of linearity obtained using VT with wide ratio error.

전류변성기 비교기의 비오차 평가 기술 (Evaluation Technique for Ratio Error of Current Transformer Comparator)

  • 김윤형;한상길;정재갑;한상옥
    • 전기학회논문지P
    • /
    • 제57권3호
    • /
    • pp.291-295
    • /
    • 2008
  • We have developed an evaluation technique for ratio errors of current transformer (CT) comparator by using the precise standard capacitors. By applying this technique for equivalent circuit of CT comparator evaluation system, we can obtain the calculated and measured ratio errors in the CT comparator. Thus we can evaluate ratio errors of CT comparator by comparing the calculated and measured ratio errors. Because this method requires only the standard capacitors, it is simple and easy method to reliability and accuracy maintenance of CT comparator. The method was applied to CT comparator under test with the ratio error ranges of $0{\sim}{\pm}10%$. The ratio error of the CT comparator under test theoretically obtained in this method are consistent with that measured for same CT comparator under test by using wide ratio error CT within an estimated expanded uncertainty (k = 2) in the overall ratio error ranges.

Analytical correction of vertical shortening based on measured data in a RC high-rise building

  • Song, Eun-seok;Kim, Jae-yo
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.527-536
    • /
    • 2020
  • In this study, a process is proposed to calculate analytical correction values for the vertical shortening of all columns on all floors in a high-rise building that minimizes the error between the structural analysis predictions and values measured during construction. The weight ratio and the most probable value were accordingly considered based on the properties of the shortening value analyzed at several points in each construction stage and the distance between these measured points and unmeasured points at which the shortening was predicted. The effective range and shortening value normalization were considered using the column grouping concept. These tools were applied to calculate the error ratio between the predicted and measured values on a floor where a measured point exists, and then determine the estimated error ratio and estimated error value for the unmeasured point using this error ratio. At points on a floor where no measured point exists, the estimated error ratio and the estimated error value were calculated by applying the most probable value considering the weight ratio for the nearest floor where measured points exist. In this manner, the error values and estimated error values can be determined at all points in a structure. Then, the analytical correction value, defined as this error or estimated error value, was applied by adding it to the predicted value. Finally, the adequacy of the proposed correction method was verified against measurements by applying the analytical corrections to all unmeasured points based on the points where the measurement exists.

고전압 전기용량 브리지를 이용한 전압변성기의 비오차와 위상각 오차의 측정과 불확도 분석 (Measurement of Ratio Error/Phase Angle Error of Potential Transformer using High Voltage Capacitance Bridge and Uncertainty Analysis)

  • 권성원;이상화;김명수;정재갑
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권3호
    • /
    • pp.134-141
    • /
    • 2006
  • A potential transformer(PT) has ratio error and phase angle error. Precise measurement of the errors of PT can be achieved using high voltage capacitance bridge, high voltage capacitor and low voltage capacitor. The uncertainty for this method is evaluated and found to be $20{\times}10^{-6}$ in both ratio error and phase angle error. The values measured for PT using the method are well consistent with the those measured for same PT in NMIA(National Measurement Institute of Australia) within the corresponding uncertainty.

표준저항기를 이용한 전압변성기 비교기의 비오차 평가 (Evaluation for Ratio Error of Voltage Transformer Comparator using Standard Resistors)

  • 한상길;김윤형;정재갑;한상옥
    • 전기학회논문지P
    • /
    • 제57권4호
    • /
    • pp.412-416
    • /
    • 2008
  • We have developed the calibration technique of the VT comparator using nonreactive standard resistors, which evaluates both accuracy and linearity of the VT comparator by comparing experimental values with theoretical values. The correction values of VT comparator obtained by using both our method and wide ratio error VT are consistent within the expanded uncertainty. Furthermore the specification for ratio error of VT comparator have been revaluated.

광범위 비오차를 갖는 계산형 전압변성기의 개발 (Development of a Calculable Potential Transformer with Wide Ratio Error)

  • 권성원;정재갑;이상화;김명수
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.1017-1021
    • /
    • 2008
  • A calculable potential transformer(PT) with nominal ratio error in wide range of -10% to +10% has been developed on basis of theoretical calculation of ratio error by the number of windings. The developed PT can be used to evaluate the linearity and accuracy of the PT comparator by comparing both the theoretical and experimental values of the PT which have exactly same ratio errors in nominal and calculated values. The PT has been applied for calibration and correction of the PT comparator up to wide ratio error range of -10% to +10%. This portable PT is very convenient to carry to the power industry for the on-site calibration of the PT comparator.

광범위 비오차 표준 전류변성기의 개발 및 그 응용 (Development of The Standard Current Transformer with Wide Ratio Error and Its Application)

  • 권성원;정재갑;이상화;김문석;김명수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권6호
    • /
    • pp.302-307
    • /
    • 2006
  • Standard current transformer(CT) with the nominal ratio errors in the range of - 10 % to + 10 % has been developed. Linearity of the CT ratio error measuring system (CT comparator) has been tested by using wide ratio error standard current transformer(WRE CT). The developed WRE CT can be used to evaluate the linearity of the CT comparator by comparing both the theoretical values and experimental values of the WRE CT. The developed method has been successfully applied for calibration and correction in the CT comparator belonging to industry.

사용 중 지진 가속도계의 정상 측정과 출력전압 선형비 오차율 관계 분석 (Relationship between Normal Measurement and Error Rate of Output Voltage Linear Ratio of Seismic Accelerometer in Use)

  • 김민준;조성철;정용훈;원정훈
    • 한국안전학회지
    • /
    • 제39권2호
    • /
    • pp.65-74
    • /
    • 2024
  • We analyzed the relationship between the normal measurement of the seismic accelerometer (SA) and the error rate of the output voltage linear ratio to propose an evaluation method to determine whether the SA in use is measuring normally. Utilizing a test bed, the regular operation of SA in use was evaluated using acceleration data measured through impact tests since there are no regulations regarding performance testing of SA in use. For the used SA, the error rate of the output voltage linear ratio, which is a major performance criterion, was evaluated. We analyzed common characteristics of the SA that satisfied the impact test and the performance criteria of the output voltage linear ratio error rate. The results indicated that we must consider the decreasing trend and convergence of the error rate as the measurement angle increases, ensuring that the average value of the output voltage linear ratio error rate is within 1%.