• Title/Summary/Keyword: Error of position

Search Result 2,695, Processing Time 0.032 seconds

A Study on Stroke Extraction for Handwritten Korean Character Recognition (필기체 한글 문자 인식을 위한 획 추출에 관한 연구)

  • Choi, Young-Kyoo;Rhee, Sang-Burm
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.375-382
    • /
    • 2002
  • Handwritten character recognition is classified into on-line handwritten character recognition and off-line handwritten character recognition. On-line handwritten character recognition has made a remarkable outcome compared to off-line hacdwritten character recognition. This method can acquire the dynamic written information such as the writing order and the position of a stroke by means of pen-based electronic input device such as a tablet board. On the contrary, Any dynamic information can not be acquired in off-line handwritten character recognition since there are extreme overlapping between consonants and vowels, and heavily noisy images between strokes, which change the recognition performance with the result of the preprocessing. This paper proposes a method that effectively extracts the stroke including dynamic information of characters for off-line Korean handwritten character recognition. First of all, this method makes improvement and binarization of input handwritten character image as preprocessing procedure using watershed algorithm. The next procedure is extraction of skeleton by using the transformed Lu and Wang's thinning: algorithm, and segment pixel array is extracted by abstracting the feature point of the characters. Then, the vectorization is executed with a maximum permission error method. In the case that a few strokes are bound in a segment, a segment pixel array is divided with two or more segment vectors. In order to reconstruct the extracted segment vector with a complete stroke, the directional component of the vector is mortified by using right-hand writing coordinate system. With combination of segment vectors which are adjacent and can be combined, the reconstruction of complete stroke is made out which is suitable for character recognition. As experimentation, it is verified that the proposed method is suitable for handwritten Korean character recognition.

A Study on Voice Activity Detection Using Auditory Scene and Periodic to Aperiodic Component Ratio in CASA System (CASA 시스템의 청각장면과 PAR를 이용한 음성 영역 검출에 관한 연구)

  • Kim, Jung-Ho;Ko, Hyung-Hwa;Kang, Chul-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.181-187
    • /
    • 2013
  • When there are background noises or some people speaking at the same time, a human's auditory sense has the ability to listen the target speech signal with a specific purpose through Auditory Scene Analysis. The CASA system with human's auditory faculty system is able to segregate the speech. However, the performance of CASA system is reduced when the CASA system fails to determine the correct position of the speech. In order to correct the error in locating the speech on the CASA system, voice activity detection algorithm is proposed in this paper, which is a combined auditory scene analysis with PAR(Periodic to Aperiodic component Ratio). The experiments have been conducted to evaluate the performance of voice activity detection in environments of white noise and car noise with the change of SNR 15~0dB. In this paper, by comparing the existing algorithms (Pitch and Guoning Hu) with the proposed algorithm, the accuracy of the voice activity detection performance has been improved as the following: improvement of maximum 4% at SNR 15dB and maximum 34% at SNR 0dB for white noise and car noise, respectively.

A Study on Indoor Position-Tracking System Using RSSI Characteristics of Beacon (비콘의 RSSI 특성을 이용한 실내 위치 추적 시스템에 관한 연구)

  • Kim, Ji-seong;Kim, Yong-kab;Hoang, Geun-chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.85-90
    • /
    • 2017
  • Indoor location-based services have been developed based on the Internet of Things technologies which measure and analyze users who are moving in their daily lives. These various indoor positioning technologies require separate hardware and have several disadvantages, such as a communication protocol which becomes complicated. Based on the fact that a reduction in signal strength occurs according to the distance due to the physical characteristics of the transmitted signal, RSSI technology that uses the received signal strength of the wireless signal used in this paper measures the strength of the transmitted signal and the intensity of the attenuated received signal and then calculates the distance between a transmitter and a receiver, which requires no separate costs and makes to implement simple measurements. It was applied calculating the value for the average RSSI and the RSSI filtering feedback. Filtering is used to reduce the error of the RSSI values that are measured at long distance.It was confirmed that the RSSI values through the average filtering and the RSSI values measured by setting the coefficient value of the feedback filtering to 0.5 were ranged from -61 dBm to - 52.5 dBm, which shows irregular and high values decrease slightly as much as about -2 dBm to -6 dBm as compared to general measurements.

One-key Keyboard: A Very Small QWERTY Keyboard Supporting Text Entry for Wearable Computing (원키 키보드: 웨어러블 컴퓨팅 환경에서 문자입력을 지원하는 초소형 QWERTY 키보드)

  • Lee, Woo-Hun;Sohn, Min-Jung
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Most of the commercialized wearable text input devices are wrist-worn keyboards that have adopted the minimization method of reducing keys. Generally, a drastic key reduction in order to achieve sufficient wearability increases KSPC(Keystrokes per Character), decreases text entry performance, and requires additional effort to learn a new typing method. We are faced with wearability-usability tradeoff problems in designing a good wearable keyboard. To address this problem, we introduced a new keyboard minimization method of reducing key pitch. From a series of empirical studies, we found the potential of a new method which has a keyboard with a 7mm key pitch, good wearability and social acceptance in terms of physical form factors, and allows users to type 15.0WPM in 3 session trials. However, participants point out that a lack of passive haptic feedback in keying action and visual feedback on users' input deteriorate the text entry performance. We have developed the One-key Keyboard that addresses this problem. The traditional desktop keyboard has one key per character, but the One-key Keyboard has only one key ($70mm{\times}35mm$) on which a 10*5 QWERTY key array is printed. The One-key Keyboard detects the position of the fingertip at the time of the keying event and figures out the character entered. We conducted a text entry performance test comprised of 5 sessions. The participants typed 18.9WPM with a 6.7% error rate over all sessions and achieved up to 24.5WPM. From the experiment's results, the One-key Keyboard was evaluated as a potential text input device for wearable computing, balancing wearability, social acceptance, input speed, and learnability.

  • PDF

Quantitative image processing analysis for handwriting legibility evaluation (글씨쓰기 명료도 평가의 정량적 영상처리 분석)

  • Kim, Eun-Bin;Lee, Cho-Hee;Kim, Eun-Young;Lee, OnSeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.158-165
    • /
    • 2019
  • Although evaluation of writing disabilities identification and timely intervention are required, clinicians adopt a manual scoring method and there is a possibility of error due to subjective evaluation. In this study, the size ratio and position of letters are digitized and quantified through image processing of offline handwritten characters. We tried to evaluate objectively and accurately the performance of writing through comparison with existing methods. From November 12th to 16th, 2018, 20 adults without neurological injury were selected. They used a pencil to follow the 10 words, 2 sentence stimuli after keeping the usual habit, and we collected the writing test data. The results showed that the height of the word was 1.2 times larger than the width and it tilted to the lower left. The spacing interval was 9mm on average. In the Paired T test, a high correlation was showed between our system and existing methods in the word and sentence 2. This demonstrated the possibility as a testing tool. This study evaluated objectively and precisely writing performance of offline handwritten characters through image processing and provided preliminary data for performance standards. In the future, it can be suggested as a basic data on writing diagnosis of various ages.

Development of a Software for Re-Entry Prediction of Space Objects for Space Situational Awareness (우주상황인식을 위한 인공우주물체 추락 예측 소프트웨어 개발)

  • Choi, Eun-Jung
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 2021
  • The high-level Space Situational Awareness (SSA) objective is to provide to the users dependable, accurate and timely information in order to support risk management on orbit and during re-entry and support safe and secure operation of space assets and related services. Therefore the risk assessment for the re-entry of space objects should be managed nationally. In this research, the Software for Re-Entry Prediction of space objects (SREP) was developed for national SSA system. In particular, the rate of change of the drag coefficient is estimated through a newly proposed Drag Scale Factor Estimation (DSFE), and is used for high-precision orbit propagator (HPOP) up to an altitude of 100 km to predict the re-entry time and position of the space object. The effectiveness of this re-entry prediction is shown through the re-entry time window and ground track of space objects falling in real events, Grace-1, Grace-2, Tiangong-1, and Chang Zheng-5B Rocket body. As a result, through analysis 12 hours before the final re-entry time, it is shown that the re-entry time window and crash time can be accurately predicted with an error of less than 20 minutes.

PID-based Consensus and Formation Control of Second-order Multi-agent System with Heterogeneous State Information (이종 상태 정보를 고려한 이차 다개체 시스템의 PID 기반 일치 및 편대 제어)

  • Min-Jae Kang;Han-Ho Tack
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.103-111
    • /
    • 2023
  • Consensus, that aims to converge the states of agents to the same states through information exchanges between agents, has been widely studied to control the multi-agent systems. In real systems, the measurement variables of each agent may be different, the loss of information across communication may occur, and the different networks for each state may need to be constructed for safety. Moreover, the input saturation and the disturbances in the system may cause instability. Therefore, this paper studies the PID(Proportional-Integral-Derivative)-based consensus control to achieve the swarm behavior of the multi-agent systems considering the heterogeneous state information, the input saturations, and the disturbances. Specifically, we consider the multiple follower agents and the single leader agent modeled by the second-order systems, and investigate the conditions to achieve the consensus based on the stability of the error system. It is confirmed that the proposed algorithm can achieve the consensus if only the connectivity of the position graph is guaranteed. Moreover, by extending the consensus algorithm, we study the formation control problem for the multi-agent systems. Finally, the validity of the proposed algorithm was verified through the simulations.

Leakage noise detection using a multi-channel sensor module based on acoustic intensity (음향 인텐시티 기반 다채널 센서 모듈을 이용한 배관 누설 소음 탐지)

  • Hyeonbin Ryoo;Jung-Han Woo;Yun-Ho Seo;Sang-Ryul Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.414-421
    • /
    • 2024
  • In this paper, we design and verify a system that can detect piping leakage noise in an environment with significant reverberation and reflection using a multi-channel acoustic sensor module as a technology to prevent major plant accidents caused by leakage. Four-channel microphones arranged in a tetrahedron are designed as a single sensor module to measure three-dimensional sound intensity vectors. In an environment with large effects of reverberation and reflection, the measurement error of each sensor module increases on average, so after placing multiple sensor modules in the field, measurement results showing locations with large errors due to effects such as reflection are excluded. Using the intersection between three-dimensional vectors obtained from several pairs of sensor modules, the coordinates where the sound source is located are estimated, and outliers (e.g., positions estimated to be outside the site, positions estimated to be far from the average position) are detected and excluded among the points. For achieving aforementioned goal, an excluding algorithm by deciding the outliers among the estimated positions was proposed. By visualizing the estimated location coordinates of the leakage sound on the site drawing within 1 second, we construct and verify a system that can detect the location of the leakage sound in real time and enable immediate response. This study is expected to contribute to improving accident response capabilities and ensuring safety in large plants.

Methods of Weighting Matrices Determination of Moving Double Poles with Jordan Block to Real Poles By LQ Control (LQ 제어로 조단블록이 있는 중근을 실근으로 이동시키는 가중행렬 결정 방법)

  • Park, Minho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.634-639
    • /
    • 2020
  • In general, the stability and response characteristics of the system can be improved by changing the pole position because a nonlinear system can be linearized by the product of a 1st and 2nd order system. Therefore, a controller that moves the pole can be designed in various ways. Among the other methods, LQ control ensures the stability of the system. On the other hand, it is difficult to specify the location of the pole arbitrarily because the desired response characteristic is obtained by selecting the weighting matrix by trial and error. This paper evaluated a method of selecting a weighting matrix of LQ control that moves multiple double poles with Jordan blocks to real poles. The relational equation between the double poles and weighting matrices were derived from the characteristic equation of the Hamiltonian system with a diagonal control weighting matrix and a state weighting matrix represented by two variables (ρd, ϕd). The Moving-Range was obtained under the condition that the state-weighting matrix becomes a positive semi-definite matrix. This paper proposes a method of selecting poles in this range and calculating the weighting matrices by the relational equation. Numerical examples are presented to show the usefulness of the proposed method.

Impact of GPS-RO Data Assimilation in 3DVAR System on the Typhoon Event (태풍 수치모의에서 GPS-RO 인공위성을 사용한 관측 자료동화 효과)

  • Park, Soon-Young;Yoo, Jung-Woo;Kang, Nam-Young;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.573-584
    • /
    • 2017
  • In order to simulate a typhoon precisely, the satellite observation data has been assimilated using WRF (Weather Research and Forecasting model) three-Dimensional Variational (3DVAR) data assimilation system. The observation data used in 3DVAR was GPS Radio Occultation (GPS-RO) data which is loaded on Low-Earth Orbit (LEO) satellite. The refractivity of Earth is deduced by temperature, pressure, and water vapor. GPS-RO data can be obtained with this refractivity when the satellite passes the limb position with respect to its original orbit. In this paper, two typhoon cases were simulated to examine the characteristics of data assimilation. One had been occurred in the Western Pacific from 16 to 25 October, 2015, and the other had affected Korean Peninsula from 22 to 29 August, 2012. In the simulation results, the typhoon track between background (BGR) and assimilation (3DV) run were significantly different when the track appeared to be rapidly change. The surface wind speed showed large difference for the long forecasting time because the GPS-RO data contained much information in the upper level, and it took a time to impact on the surface wind. Along with the modified typhoon track, the differences in the horizontal distribution of accumulated rain rate was remarkable with the range of -600~500 mm. During 7 days, we estimated the characteristics between daily assimilated simulation (3DV) and initial time assimilation (3DV_7). Because 3DV_7 demonstrated the accurate track of typhoon and its meteorological variables, the differences in two experiments have found to be insignificant. Using observed rain rate data at 79 surface observatories, the statistical analysis has been carried on for the evaluation of quantitative improvement. Although all experiments showed underestimated rain amount because of low model resolution (27 km), the reduced Mean Bias and Root-Mean-Square Error were found to be 2.92 mm and 4.53 mm, respectively.