• Title/Summary/Keyword: Error of Conversion Model

Search Result 93, Processing Time 0.027 seconds

A Mechanical Sensorless Vector-Controlled Induction Motor System with Parameter Identification by the Aid of Image Processor

  • Tsuji Mineo;Chen Shuo;Motoo Tatsunori;Kawabe Yuki;Hamasaki Shin-ichi
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.350-357
    • /
    • 2005
  • This paper presents a mechanical sensorless vector-controlled system with parameter identification by the aid of image processor. Based on the flux observer and the model reference adaptive system method, the proposed sensorless system includes rotor speed estimation and stator resistance identification using flux errors. Since the mathematical model of this system is constructed in a synchronously rotating reference frame, a linear model is easily derived for analyzing the system stability, including motor operating state and parameter variations. Because it is difficult to identify rotor resistance simultaneously while estimating rotor speed, a low-accuracy image processor is used to measure the mechanical axis position for calculating the rotor speed at a steady-state operation. The rotor resistance is identified by the error between the estimated speed using the estimated flux and the calculated speed using the image processor. Finally, the validity of this proposed system has been proven through experimentation.

New Strategy to Estimate The Rotor Flux of Induction Motor by Analyzing Observer Characteristic Function

  • Kim, Jang-Hwan;Park, Jong-Woo;Sul, Seung-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.51-58
    • /
    • 2001
  • This paper proposes a new strategy to estimate the rotor flux of an induction machine for the direct field oriented control. Electrical model of the induction machine presents the basic idea based on observer structure, which is composed of voltage model and current model. But the former has the defects in low speed range, the latter has the defects of sensitivity to machine parameters. In spite of these shortcomings, the closed loop flux observer based on two models has been prevalent estimation method for the direct field oriented control. In this paper, generalized analysis method named "observer characteristic function method"is proposed to analyze the kinds of the linear flux observers in unified form. With the observer characteristic function, the estimated rotor flux error involved in the classical methods can be easily clarified. Moreover, the novel rotor flux observer based on this analysis is also presented and the effectiveness of the observer has been verified by the simulation and experimental results.

Velocity Control of Permanent Magnet Synchronous Motors using Model Predictive and Sliding Mode Cascade Controller (슬라이딩 모드 및 모델 예측 직렬형 제어기를 이용한 영구자석형 동기전동기의 속도제어)

  • Lee, Ilro;Lee, Youngwoo;Shin, Donghoon;Chung, Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.801-806
    • /
    • 2015
  • In this paper, we propose cascade-form velocity controller for a permanent magnet synchronous motor (PMSM). The proposed controller consists of a sliding-mode controller (SMC) for the inner current control loop and a model-predictive controller (MPC) for the outer velocity control loop. With SMC, we can ensure that the current tracking error always converges to zero in finite time. The SMC is designed to track the desired currents. Additionally, with MPC, we can obtain the optimal velocity control input which minimizes the cost function. Constraint conditions for input and input variation are included in the MPC design. The simulation results are included to validate the performance of the proposed controller.

Design of 3D Laser Radar Based on Laser Triangulation

  • Yang, Yang;Zhang, Yuchen;Wang, Yuehai;Liu, Danian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2414-2433
    • /
    • 2019
  • The aim of this paper is to design a 3D laser radar prototype based on laser triangulation. The mathematical model of distance sensitivity is deduced; a pixel-distance conversion formula is discussed and used to complete 3D scanning. The center position extraction algorithm of the spot is proposed, and the error of the linear laser, camera distortion and installation are corrected by using the proposed weighted average algorithm. Finally, the three-dimensional analytic computational algorithm is given to transform the measured distance into point cloud data. The experimental results show that this 3D laser radar can accomplish the 3D object scanning and the environment 3D reconstruction task. In addition, the experiment result proves that the product of the camera focal length and the baseline length is the key factor to influence measurement accuracy.

A Performance Comparison of Block-Based Matching Cost Evaluation Models for FRUC Techniques

  • Kim, Jin-Soo;Kim, Jae-Gon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.671-675
    • /
    • 2011
  • DVC (Distributed Video Coding) and FRUC (Frame Rate Up Conversion) techniques need to have an efficient motion compensated frame interpolation algorithms. Conventional works of these applications have mainly focused on the performance improvement of overall system. But, in some applications, it is necessary to evaluate how well the MCI (Motion Compensated Interpolation) frame matches the original frame. For this aim, this paper deals with the modeling methods for evaluating the block-based matching cost. First, several matching criteria, which have already been dealt with the motion compensated frame interpolation, are introduced and then combined to make estimate models for the size of MSE (Mean Square Error) noise of the MCI frame to original one. Through computer simulations, it is shown that the block-based matching criteria are evaluated and the proposed model can be effectively used for estimating the MSE noise.

Robust Control of a Grid Connected Three-Phase Two-Level Photovoltaic Inverter (3상 2레벨 계통연계형 태양광 인버터의 강인제어)

  • Ahn, Kyung-Pil;Lee, YoungIl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.538-548
    • /
    • 2014
  • This study provides a robust control of a grid-connected three-phase two-level photo voltaic inverter. The introduced control method uses the cascade control strategy to regulate AC-side current and DC-link voltage. A robust controller with integration action is used for the inner-loop AC-side current control, which maximizes the convergence rate using a linear matrix inequality-based optimization design method and eliminates the offset error. The robust controller design method considers the parameter uncertainty set to accommodate parameter mismatch and un-modeled components in the inverter model. An outer-loop proportional-integral controller is used to regulate DC-link voltage with linearization of DC/AC relation. The proposed control strategy is applied to a grid-connected 100 kW photo voltaic inverter.

A Vector-Controlled PMSM Drive with a Continually On-Line Learning Hybrid Neural-Network Model-Following Speed Controller

  • EI-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.129-141
    • /
    • 2005
  • A high-performance robust hybrid speed controller for a permanent-magnet synchronous motor (PMSM) drive with an on-line trained neural-network model-following controller (NNMFC) is proposed. The robust hybrid controller is a two-degrees-of-freedom (2DOF) integral plus proportional & rate feedback (I-PD) with neural-network model-following (NNMF) speed controller (2DOF I-PD NNMFC). The robust controller combines the merits of the 2DOF I-PD controller and the NNMF controller to regulate the speed of a PMSM drive. First, a systematic mathematical procedure is derived to calculate the parameters of the synchronous d-q axes PI current controllers and the 2DOF I-PD speed controller according to the required specifications for the PMSM drive system. Then, the resulting closed loop transfer function of the PMSM drive system including the current control loop is used as the reference model. In addition to the 200F I-PD controller, a neural-network model-following controller whose weights are trained on-line is designed to realize high dynamic performance in disturbance rejection and tracking characteristics. According to the model-following error between the outputs of the reference model and the PMSM drive system, the NNMFC generates an adaptive control signal which is added to the 2DOF I-PD speed controller output to attain robust model-following characteristics under different operating conditions regardless of parameter variations and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed 200F I-PD NNMF controller. The results confirm that the proposed 2DOF I-PO NNMF speed controller produces rapid, robust performance and accurate response to the reference model regardless of load disturbances or PMSM parameter variations.

A study on the DGPS data errors correction through real-time coordinates conversion using the vision system (비젼 시스템을 이용한 DGPS 데이터 보정에 관한 연구)

  • Mun, Seong-Ryong;Chae, Jung-Su;Park, Jang-Hun;Lee, Ho-Soon;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2310-2312
    • /
    • 2003
  • This paper describes a navigation system for an autonomous vehicle in outdoor environments. The vehicle uses vision system to detect coordinates and DGPS information to determine the vehicles initial position and orientation. The vision system detects coordinates in the environment by referring to an environment model. As the vehicle moves, it estimates its position by conventional DGPS data, and matches up the coordinates with the environment model in order to reduce the error in the vehicles position estimate. The vehicles initial position and orientation are calculated from the coordinate values of the first and second locations, which are acquired by DGPS. Subsequent orientations and positions are derived. Experimental results in real environments have showed the effectiveness of our proposed navigation methods and real-time methods.

  • PDF

Application of deep convolutional neural network for short-term precipitation forecasting using weather radar-based images

  • Le, Xuan-Hien;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.136-136
    • /
    • 2021
  • In this study, a deep convolutional neural network (DCNN) model is proposed for short-term precipitation forecasting using weather radar-based images. The DCNN model is a combination of convolutional neural networks, autoencoder neural networks, and U-net architecture. The weather radar-based image data used here are retrieved from competition for rainfall forecasting in Korea (AI Contest for Rainfall Prediction of Hydroelectric Dam Using Public Data), organized by Dacon under the sponsorship of the Korean Water Resources Association in October 2020. This data is collected from rainy events during the rainy season (April - October) from 2010 to 2017. These images have undergone a preprocessing step to convert from weather radar data to grayscale image data before they are exploited for the competition. Accordingly, each of these gray images covers a spatial dimension of 120×120 pixels and has a corresponding temporal resolution of 10 minutes. Here, each pixel corresponds to a grid of size 4km×4km. The DCNN model is designed in this study to provide 10-minute predictive images in advance. Then, precipitation information can be obtained from these forecast images through empirical conversion formulas. Model performance is assessed by comparing the Score index, which is defined based on the ratio of MAE (mean absolute error) to CSI (critical success index) values. The competition results have demonstrated the impressive performance of the DCNN model, where the Score value is 0.530 compared to the best value from the competition of 0.500, ranking 16th out of 463 participating teams. This study's findings exhibit the potential of applying the DCNN model to short-term rainfall prediction using weather radar-based images. As a result, this model can be applied to other areas with different spatiotemporal resolutions.

  • PDF

Automatic Conversion of English Pronunciation Using Sequence-to-Sequence Model (Sequence-to-Sequence Model을 이용한 영어 발음 기호 자동 변환)

  • Lee, Kong Joo;Choi, Yong Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.5
    • /
    • pp.267-278
    • /
    • 2017
  • As the same letter can be pronounced differently depending on word contexts, one should refer to a lexicon in order to pronounce a word correctly. Phonetic alphabets that lexicons adopt as well as pronunciations that lexicons describe for the same word can be different from lexicon to lexicon. In this paper, we use a sequence-to-sequence model that is widely used in deep learning research area in order to convert automatically from one pronunciation to another. The 12 seq2seq models are implemented based on pronunciation training data collected from 4 different lexicons. The exact accuracy of the models ranges from 74.5% to 89.6%. The aim of this study is the following two things. One is to comprehend a property of phonetic alphabets and pronunciations used in various lexicons. The other is to understand characteristics of seq2seq models by analyzing an error.