• 제목/요약/키워드: Error monitoring system

Search Result 592, Processing Time 0.034 seconds

Assessment of Applicability of Portable HPGe Detector with In Situ Object Counting System based on Performance Evaluation of Thyroid Radiobioassays

  • Park, MinSeok;Kwon, Tae-Eun;Pak, Min Jung;Park, Se-Young;Ha, Wi-Ho;Jin, Young-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.83-90
    • /
    • 2017
  • Background: Different cases exist in the measurement of thyroid radiobioassays owing to the individual characteristics of the subjects, especially the potential variation in the counting efficiency. An In situ Object Counting System (ISOCS) was developed to perform an efficiency calibration based on the Monte Carlo calculation, as an alternative to conventional calibration methods. The purpose of this study is to evaluate the applicability of ISOCS to thyroid radiobioassays by comparison with a conventional thyroid monitoring system. Materials and Methods: The efficiency calibration of a portable high-purity germanium (HPGe) detector was performed using ISOCS software. In contrast, the conventional efficiency calibration, which needed a radioactive material, was applied to a scintillator-based thyroid monitor. Four radioiodine samples that contained $^{125}I$ and $^{131}I$ in both aqueous solution and gel forms were measured to evaluate radioactivity in the thyroid. ANSI/HPS N13.30 performance criteria, which included the relative bias, relative precision, and root-mean-squared error, were applied to evaluate the performance of the measurement system. Results and Discussion: The portable HPGe detector could measure both radioiodines with ISOCS but the thyroid monitor could not measure $^{125}I$ because of the limited energy resolution of the NaI(Tl) scintillator. The $^{131}I$ results from both detectors agreed to within 5% with the certified results. Moreover, the $^{125}I$ results from the portable HPGe detector agreed to within 10% with the certified results. All measurement results complied with the ANSI/HPS N13.30 performance criteria. Conclusion: The results of the intercomparison program indicated the feasibility of applying ISOCS software to direct thyroid radiobioassays. The portable HPGe detector with ISOCS software can provide the convenience of efficiency calibration and higher energy resolution for identifying photopeaks, compared with a conventional thyroid monitor with a NaI(Tl) scintillator. The application of ISOCS software in a radiation emergency can improve the response in terms of internal contamination monitoring.

CNN Classifier Based Energy Monitoring System for Production Tracking of Sewing Process Line (봉제공정라인 생산 추적을 위한 CNN분류기 기반 에너지 모니터링 시스템)

  • Kim, Thomas J.Y.;Kim, Hyungjung;Jung, Woo-Kyun;Lee, Jae Won;Park, Young Chul;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.5 no.2
    • /
    • pp.70-81
    • /
    • 2019
  • The garment industry is one of the most labor-intensive manufacturing industries, with its sewing process relying almost entirely on manual labor. Its costs highly depend on the efficiency of this production line and thus is crucial to determine the production rate in real-time for line balancing. However, current production tracking methods are costly and make it difficult for many Small and Medium-sized Enterprises (SMEs) to implement them. As a result, their reliance on manual counting of finished products is both time consuming and prone to error, leading to high manufacturing costs and inefficiencies. In this paper, a production tracking system that uses the sewing machines' energy consumption data to track and count the total number of sewing tasks completed through Convolutional Neural Network (CNN) classifiers is proposed. This system was tested on two target sewing tasks, with a resulting maximum classification accuracy of 98.6%; all sewing tasks were detected. In the developing countries, the garment sewing industry is a very important industry, but the use of a lot of capital is very limited, such as applying expensive high technology to solve the above problem. Applied with the appropriate technology, this system is expected to be of great help to the garment industry in developing countries.

Development of the Portable Weighing Scale Automatic Device for Disabled Wheelchair Users (휠체어 탑승 장애인을 위한 이동형 체중측정 자동화 장치 개발)

  • Jang, Kyung-Bae;Lee, Kyeong-Wan;Koo, Do-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.1
    • /
    • pp.61-67
    • /
    • 2013
  • Wheelchair users have a difficulty in managing their weight because there is lack of measure systems and even though the users have the system, it costs too much. Thus, purpose of this study is for developing the portable weight scale automatic device to help wheelchair users by monitoring their weight on the wheelchairs in real time. Portable weight scale automatic device composed by four strain gauges, and the device was connected with mobile phone so that wheelchair users were able to check their weight in real time. In order to evaluate the device performance, 10 normal subjects and 10 disabled subjects participated in this study. The subjects' truth weight and measured weight by the device are compared. The weigh difference within normal subjects was $0.75{\pm}0.80kg$, and the weigh difference within disabled subjects was $1.02{\pm}0.74kg$. Difference between the truth weigh and the measured weigh were not statistically different. The reason for this error occurred is inaccuracy of the loadcell installation and calibration. If this problems get solved, the measured indicator is expected to help wheelchair users to manage their weight.

Accuracy Assessment of Topographic Volume Estimation Using Kompsat-3 and 3-A Stereo Data

  • Oh, Jae-Hong;Lee, Chang-No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.261-268
    • /
    • 2017
  • The topographic volume estimation is carried out for the earth work of a construction site and quarry excavation monitoring. The topographic surveying using instruments such as engineering levels, total stations, and GNSS (Global Navigation Satellite Systems) receivers have traditionally been used and the photogrammetric approach using drone systems has recently been introduced. However, these methods cannot be adopted for inaccessible areas where high resolution satellite images can be an alternative. We carried out experiments using Kompsat-3/3A data to estimate topographic volume for a quarry and checked the accuracy. We generated DEMs (Digital Elevation Model) using newly acquired Kompsat-3/3A data and checked the accuracy of the topographic volume estimation by comparing them to a reference DEM generated by timely operating a drone system. The experimental results showed that geometric differences between stereo images significantly lower the quality of the volume estimation. The tested Kompsat-3 data showed one meter level of elevation accuracy with the volume estimation error less than 1% while the tested Kompsat-3A data showed lower results because of the large geometric difference.

Effective Heterogeneous Data Fusion procedure via Kalman filtering

  • Ravizza, Gabriele;Ferrari, Rosalba;Rizzi, Egidio;Chatzi, Eleni N.
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.631-641
    • /
    • 2018
  • This paper outlines a computational procedure for the effective merging of diverse sensor measurements, displacement and acceleration signals in particular, in order to successfully monitor and simulate the current health condition of civil structures under dynamic loadings. In particular, it investigates a Kalman Filter implementation for the Heterogeneous Data Fusion of displacement and acceleration response signals of a structural system toward dynamic identification purposes. The procedure is perspectively aimed at enhancing extensive remote displacement measurements (commonly affected by high noise), by possibly integrating them with a few standard acceleration measurements (considered instead as noise-free or corrupted by slight noise only). Within the data fusion analysis, a Kalman Filter algorithm is implemented and its effectiveness in improving noise-corrupted displacement measurements is investigated. The performance of the filter is assessed based on the RMS error between the original (noise-free, numerically-determined) displacement signal and the Kalman Filter displacement estimate, and on the structural modal parameters (natural frequencies) that can be extracted from displacement signals, refined through the combined use of displacement and acceleration recordings, through inverse analysis algorithms for output-only modal dynamics identification, based on displacements.

Automated Geo-registration for Massive Satellite Image Processing

  • Heo, Joon;Park, Wan-Yong;Bang, Soo-Nam
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.345-349
    • /
    • 2005
  • Massive amount of satellite image processing such asglobal/continental-level analysis and monitoring requires automated and speedy georegistration. There could be two major automated approaches: (1) rigid mathematical modeling using sensor model and ephemeris data; (2) heuristic co-registration approach with respect to existing reference image. In case of ETM+, the accuracy of the first approach is known as RMSE 250m, which is far below requested accuracy level for most of satellite image processing. On the other hands, the second approach is to find identical points between new image and reference image and use heuristic regression model for registration. The latter shows better accuracy but has problems with expensive computation. To improve efficiency of the coregistration approach, the author proposed a pre-qualified matching algorithm which is composed of feature extraction with canny operator and area matching algorithm with correlation coefficient. Throughout the pre-qualification approach, the computation time was significantly improved and make the registration accuracy is improved. A prototype was implemented and tested with the proposed algorithm. The performance test of 14 TM/ETM+ images in the U.S. showed: (1) average RMSE error of the approach was 0.47 dependent upon terrain and features; (2) the number average matching points were over 15,000; (3) the time complexity was 12 min per image with 3.2GHz Intel Pentium 4 and 1G Ram.

  • PDF

Instantaneous Speed Variation of Crankshaft on a Low Speed Marine Diesel Engine (저속박용디젤기관의 순간회전속도 변동에 관한 연구)

  • Choi, Jae-Sung;Lee, Jin-Uk;Lee, Sang-Dug;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.138-144
    • /
    • 2007
  • The variation of the crankshaft speed in a multi-cylinder engine is determined by the resultant gas pressure torque and the torsional deformation of the crankshaft. Under steady state operation, the crankshaft speed has a quasi-periodic variation. For the diagnosis the engine instantaneous speed versus crankshaft angle is utilized. This paper describes a simple measurement method of the engine instantaneous speed versus crankshaft angle using the teeth on the flywheel of the crankshaft. Two non-contacting magnetic pickup combinations detect the crank angle and TDC position for the data acquisition. The results from experiments on a 6 cylinder marine diesel engine demonstrate that the crankshaft speed variation are detected with good resolution. And the crankshaft speed variation is investigated according to the operation conditions. Also, it is confirmed that the engine output measured by EMS can be evaluated larger than the actual value due to TDC position error caused by instantaneous speed variation.

An Implementation of ARM 920T Processor-based Ultrasonic Spirometer and Improvement of Its Sensitivity (ARM 920T 프로세서 기반의 초음파 폐활량계 구현 및 감도 향상 연구)

  • Lee, Cheul-Won;Kim, Young-Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.268-273
    • /
    • 2005
  • The spirometer is a medical device that measures the instantaneous velocity of the respiratory gas flow capacity. It is used for testing the condition of the lung and patient monitoring. It measures the absolute capacity difference that includes the flow capacity signal. In this paper, by using an ultrasound sensor that reduce+ the error caused by the inertia and pressure it has improved the transmission and receiving signal. This has enabled patients with weak respiratory to use the spirometer. Also, by using the ARM 920T Processor, a precise and prompt detection system was implemented.

Consolidation Behavior of Soft Ground by Prefabricated Vertical Drains (연직드레인 공법에 의한 연약지반의 압밀거동)

  • 이달원;강예묵
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.376-381
    • /
    • 1998
  • The large scaled field test by prefabricated vertical drains was performed to evaluate the superiority of vertical discharge capacity for drain materials through compare and analyze the time-settlement behavior with drain spacing and the compression index and consolidation coefficient obtained by laboratory experiments and field monitoring system 1. The relation of measurement settlement( $S_{m}$) versus design settlement( $S_{t}$) and measurement consolidation ratio( $U_{m}$) versus design consolidation ratio( $U_{t}$) were shown $S_{m}$=(1.0~l.1) $S_{t}$, $U_{m}$=(1.13~l.17) $U_{t}$, at 1.0m drain spacing and $S_{m}$=(0.7~0.8) $S_{t}$, $U_{m}$=(0.92~0.99) $U_{t}$ at 1.5m drain spacing, respectively. 2. The relation of field compression index( $C_{cfield}$) and virgin compression index( $V_{cclab}$) was shown $C_{cfield}$=(1.0~1.2) $V_{cclab}$, But it was nearly same value when considered the error with determination method of virgin compression index and prediction method of total settlement. 3. field consolidation coefficient was larger than laboratory consolidation coefficient, and the consolidation coefficient ratio( $C_{h}$/ $C_{v}$) were $C_{h}$=(2.4 ~ 3.0) $C_{v}$. $C_{h}$=(3.5 ~ 4.3) $C_{v}$ at 1.0m and 1.5m drain spacing and increased with increasing of drain spacingngasing of drain spacingng spacingng

  • PDF

Immersion Ration Estimation Using Spindle Motor Current during Milling (밀링공정에서 주축모터전류를 이용한 절입비 추정)

  • Cho, K.-J.;Kwon, W.-T.;Cho, D.-W.;Chu, C.-N.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.222-229
    • /
    • 1999
  • In order to regulate cutting torque in milling, monitoring system should be set to a certain threshold. Radial immersion ratio is an important factor to determine the threshold and should be estimated in process for automatic regulation. In this paper, on-line estimation of the radial immersion ration using spindle motor current in face milling is presented. When a tooth finishes sweeping, a sudden drop of cutting torque occurs. This torque drop is equal to cutting torque acting on a single tooth at the swept angle of cut and can be acquired form cutting torque signals. Average cutting torque per revolution can also be calculate form cutting torque signals. The ratio of cutting torque acting on a single tooth at the swept angle of cut to the average cutting torque per revolution is a function of the swept angle of cut and the number of teeth. Using the magnitude of this ratio, the radial immersion ratio is estimated. Identical algorithm is adopted to estimate the immersion ratio based on the spindle motor current measurement. The experiments performed under different cutting conditions show that the radial immersion ratio can be estimated within 10% error range by the proposed method using spindle motor current.

  • PDF