• Title/Summary/Keyword: Error level

Search Result 2,511, Processing Time 0.034 seconds

Development of a Retrieval Algorithm for Adjustment of Satellite-viewed Cloudiness (위성관측운량 보정을 위한 알고리즘의 개발)

  • Son, Jiyoung;Lee, Yoon-Kyoung;Choi, Yong-Sang;Ok, Jung;Kim, Hye-Sil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.415-431
    • /
    • 2019
  • The satellite-viewed cloudiness, a ratio of cloudy pixels to total pixels ($C_{sat,\;prev}$), inevitably differs from the "ground-viewed" cloudiness ($C_{grd}$) due to different viewpoints. Here we develop an algorithm to retrieve the satellite-viewed, but adjusted cloudiness to $C_{grd} (C_{sat,\;adj})$. The key process of the algorithm is to convert the cloudiness projected on the plane surface into the cloudiness on the celestial hemisphere from the observer. For this conversion, the supplementary satellite retrievals such as cloud detection and cloud top pressure are used as they provide locations of cloudy pixels and cloud base height information, respectively. The algorithm is tested for Himawari-8 level 1B data. The $C_{sat,\;adj}$ and $C_{sat,\;prev}$ are retrieved and validated with $C_{grd}$ of SYNOP station over Korea (22 stations) and China (724 stations) during only daytime for the first seven days of every month from July 2016 to June 2017. As results, the mean error of $C_{sat,\;adj}$ (0.61) is less that than that of $C_{sat,\;prev}$ (1.01). The percent of detection for 'Cloudy' scenario of $C_{sat,\;adj}$ (73%) is higher than that of $C_{sat,\;prev}$ (60%) The percent of correction, the accuracy, of $C_{sat,\;adj}$ is 61%, while that of $C_{sat,\;prev}$ is 55% for all seasons. For the December-January-February period when cloudy pixels are readily overestimated, the proportion of correction of $C_{sat,\;adj$ is 60%, while that of $C_{sat,\;prev}$ is 56%. Therefore, we conclude that the present algorithm can effectively get the satellite cloudiness near to the ground-viewed cloudiness.

Application and Comparative Analysis of River Discharge Estimation Methods Using Surface Velocity (표면유속을 이용한 하천 유량산정방법의 적용 및 비교 분석)

  • Jae Hyun, Song;Seok Geun Park;Chi Young Kim;Hung Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.15-32
    • /
    • 2023
  • There are some difficulties such as safety problem and need of manpower in measuring discharge by submerging the instruments because of many floating debris and very fast flow in the river during the flood season. As an alternative, microwave water surface current meters have been increasingly used these days, which are easy to measure the discharge in the field without contacting the water surface directly. But it is also hard to apply the method in the sudden and rapidly changing field conditions. Therefore, the estimation of the discharge using the surface velocity in flood conditions requires a theoretical and economical approach. In this study, the measurements from microwave water surface current meter and rating curve were collected and then analyzed by the discharge estimation method using the surface velocity. Generally, the measured and converted discharge are analyzed to be similar in all methods at a hydraulic radius of 3 m or over or a mean velocity of 2 ㎧ or more. Besides, the study computed the discharge by the index velocity method and the velocity profile method with the maximum surface velocity in the section where the maximum velocity occurs at the high water level range of the rating curve among the target locations. As a result, the mean relative error with the converted discharge was within 10%. That is, in flood season, the discharge estimation method using one maximum surface velocity measurement, index velocity method, and velocity profile method can be applied to develop high-level extrapolation, therefore, it is judged that the reliability for the range of extrapolation estimation could be improved. Therefore, the discharge estimation method using the surface velocity is expected to become a fast and efficient discharge measurement method during the flood season.

The Relationship between Financial Constraints and Investment Activities : Evidenced from Korean Logistics Firms (우리나라 물류기업의 재무제약 수준과 투자활동과의 관련성에 관한 연구)

  • Lee, Sung-Yhun
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.2
    • /
    • pp.65-78
    • /
    • 2024
  • This study investigates the correlation between financial constraints and investment activities in Korean logistics firms. A sample of 340 companies engaged in the transportation sector, as per the 2021 KSIC, was selected for analysis. Financial data obtained from the DART were used to compile a panel dataset spanning from 1996 to 2021, totaling 6,155 observations. The research model was validated, and tests for heteroscedasticity and autocorrelation in the error terms were conducted considering the panel data structure. The relationship between investment activities in the previous period and current investment activities was analyzed using panel Generalized Method of Moments(GMM). The validation results of the research indicate that Korean logistics firms tend to increase investment activities as their level of financial constraints improves. Specifically, a positive relationship between the level of financial constraints and investment activities was consistently observed across all models. These findings suggest that investment decision-making varies based on the financial constraints faced by companies, aligning with previous research indicating that investment activities of constrained firms are subdued. Moreover, while the results from the model examining whether investment activities in the previous period affect current investment activities indicated an influence of investment activities from the previous period on current investment activities, the investment activities from two periods ago did not show a significant relationship with current investment activities. Among the control variables, firm size and cash flow variables exhibited positive relationships, while debt size and asset diversification variables showed negative relationships. Thus, larger firm size and smoother cash flows were associated with more proactive investment activities, while high debt levels and extensive asset diversification appeared to constrain investment activities in logistics companies. These results interpret that under financial constraints, internal funding sources such as cash flows exhibit positive relationships, whereas external capital sources such as debt demonstrate negative relationships, consistent with empirical findings from previous research.

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.

The Effects of Evaluation Attributes of Cultural Tourism Festivals on Satisfaction and Behavioral Intention (문화관광축제 방문객의 평가속성 만족과 행동의도에 관한 연구 - 2006 광주김치대축제를 중심으로 -)

  • Kim, Jung-Hoon
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.2
    • /
    • pp.55-73
    • /
    • 2007
  • Festivals are an indispensable feature of cultural tourism(Formica & Uysal, 1998). Cultural tourism festivals are increasingly being used as instruments promoting tourism and boosting the regional economy. So much research related to festivals is undertaken from a variety of perspectives. Plans to revisit a particular festival have been viewed as an important research topic both in academia and the tourism industry. Therefore festivals have frequently been leveled as cultural events. Cultural tourism festivals have become a crucial component in constituting the attractiveness of tourism destinations(Prentice, 2001). As a result, a considerable number of tourist studies have been carried out in diverse cultural tourism festivals(Backman et al., 1995; Crompton & Mckay, 1997; Park, 1998; Clawson & Knetch, 1996). Much of previous literature empirically shows the close linkage between tourist satisfaction and behavioral intention in festivals. The main objective of this study is to investigate the effects of evaluation attributes of cultural tourism festivals on satisfaction and behavioral intention. accomplish the research objective, to find out evaluation items of cultural tourism festivals through the literature study an empirical study. Using a varimax rotation with Kaiser normalization, the research obtained four factors in the 18 evaluation attributes of cultural tourism festivals. Some empirical studies have examined the relationship between behavioral intention and actual behavior. To understand between tourist satisfaction and behavioral intention, this study suggests five hypotheses and hypothesized model. In this study, the analysis is based on primary data collected from visitors who participated in '2006 Gwangju Kimchi Festival'. In total, 700 self-administered questionnaires were distributed and 561 usable questionnaires were obtained. Respondents were presented with the 18 satisfactions item on a scale from 1(strongly disagree) to 7(strongly agree). Dimensionality and stability of the scale were evaluated by a factor analysis with varimax rotation. Four factors emerged with eigenvalues greater than 1, which explained 66.40% of the total variance and Cronbach' alpha raging from 0.876 to 0.774. And four factors named: advertisement and guides, programs, food and souvenirs, and convenient facilities. To test and estimate the hypothesized model, a two-step approach with an initial measurement model and a subsequent structural model for Structural Equation Modeling was used. The AMOS 4.0 analysis package was used to conduct the analysis. In estimating the model, the maximum likelihood procedure was used.In this study Chi-square test is used, which is the most common model goodness-of-fit test. In addition, considering the literature about the Structural Equation Modeling, this study used, besides Chi-square test, more model fit indexes to determine the tangibility of the suggested model: goodness-of-fit index(GFI) and root mean square error of approximation(RMSEA) as absolute fit indexes; normed-fit index(NFI) and non-normed-fit index(NNFI) as incremental fit indexes. The results of T-test and ANOVAs revealed significant differences(0.05 level), therefore H1(Tourist Satisfaction level should be different from Demographic traits) are supported. According to the multiple Regressions analysis and AMOS, H2(Tourist Satisfaction positively influences on revisit intention), H3(Tourist Satisfaction positively influences on word of mouth), H4(Evaluation Attributes of cultural tourism festivals influences on Tourist Satisfaction), and H5(Tourist Satisfaction positively influences on Behavioral Intention) are also supported. As the conclusion of this study are as following: First, there were differences in satisfaction levels in accordance with the demographic information of visitors. Not all visitors had the same degree of satisfaction with their cultural tourism festival experience. Therefore it is necessary to understand the satisfaction of tourists if the experiences that are provided are to meet their expectations. So, in making festival plans, the organizer should consider the demographic variables in explaining and segmenting visitors to cultural tourism festival. Second, satisfaction with attributes of evaluation cultural tourism festivals had a significant direct impact on visitors' intention to revisit such festivals and the word of mouth publicity they shared. The results indicated that visitor satisfaction is a significant antecedent of their intention to revisit such festivals. Festival organizers should strive to forge long-term relationships with the visitors. In addition, it is also necessary to understand how the intention to revisit a festival changes over time and identify the critical satisfaction factors. Third, it is confirmed that behavioral intention was enhanced by satisfaction. The strong link between satisfaction and behavioral intentions of visitors areensured by high quality advertisement and guides, programs, food and souvenirs, and convenient facilities. Thus, examining revisit intention from a time viewpoint may be of a great significance for both practical and theoretical reasons. Additionally, festival organizers should give special attention to visitor satisfaction, as satisfied visitors are more likely to return sooner. The findings of this research have several practical implications for the festivals managers. The promotion of cultural festivals should be based on the understanding of tourist satisfaction for the long- term success of tourism. And this study can help managers carry out this task in a more informed and strategic manner by examining the effects of demographic traits on the level of tourist satisfaction and the behavioral intention. In other words, differentiated marketing strategies should be stressed and executed by relevant parties. The limitations of this study are as follows; the results of this study cannot be generalized to other cultural tourism festivals because we have not explored the many different kinds of festivals. A future study should be a comparative analysis of other festivals of different visitor segments. Also, further efforts should be directed toward developing more comprehensive temporal models that can explain behavioral intentions of tourists.

  • PDF

Application and Analysis of Ocean Remote-Sensing Reflectance Quality Assurance Algorithm for GOCI-II (천리안해양위성 2호(GOCI-II) 원격반사도 품질 검증 시스템 적용 및 결과)

  • Sujung Bae;Eunkyung Lee;Jianwei Wei;Kyeong-sang Lee;Minsang Kim;Jong-kuk Choi;Jae Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1565-1576
    • /
    • 2023
  • An atmospheric correction algorithm based on the radiative transfer model is required to obtain remote-sensing reflectance (Rrs) from the Geostationary Ocean Color Imager-II (GOCI-II) observed at the top-of-atmosphere. This Rrs derived from the atmospheric correction is utilized to estimate various marine environmental parameters such as chlorophyll-a concentration, total suspended materials concentration, and absorption of dissolved organic matter. Therefore, an atmospheric correction is a fundamental algorithm as it significantly impacts the reliability of all other color products. However, in clear waters, for example, atmospheric path radiance exceeds more than ten times higher than the water-leaving radiance in the blue wavelengths. This implies atmospheric correction is a highly error-sensitive process with a 1% error in estimating atmospheric radiance in the atmospheric correction process can cause more than 10% errors. Therefore, the quality assessment of Rrs after the atmospheric correction is essential for ensuring reliable ocean environment analysis using ocean color satellite data. In this study, a Quality Assurance (QA) algorithm based on in-situ Rrs data, which has been archived into a database using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Archive and Storage System (SeaBASS), was applied and modified to consider the different spectral characteristics of GOCI-II. This method is officially employed in the National Oceanic and Atmospheric Administration (NOAA)'s ocean color satellite data processing system. It provides quality analysis scores for Rrs ranging from 0 to 1 and classifies the water types into 23 categories. When the QA algorithm is applied to the initial phase of GOCI-II data with less calibration, it shows the highest frequency at a relatively low score of 0.625. However, when the algorithm is applied to the improved GOCI-II atmospheric correction results with updated calibrations, it shows the highest frequency at a higher score of 0.875 compared to the previous results. The water types analysis using the QA algorithm indicated that parts of the East Sea, South Sea, and the Northwest Pacific Ocean are primarily characterized as relatively clear case-I waters, while the coastal areas of the Yellow Sea and the East China Sea are mainly classified as highly turbid case-II waters. We expect that the QA algorithm will support GOCI-II users in terms of not only statistically identifying Rrs resulted with significant errors but also more reliable calibration with quality assured data. The algorithm will be included in the level-2 flag data provided with GOCI-II atmospheric correction.

The Effect of Corporate Association on the Perceived Risk of the Product (소비자의 제품 지각 위험에 대한 기업연상과 효과: 지식과 관여의 조절적 역활을 중심으로)

  • Cho, Hyun-Chul;Kang, Suk-Hou;Kim, Jin-Yong
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.1-32
    • /
    • 2008
  • Brown and Dacin (1997) have investigated the relationship between corporate associations and product evaluations. Their study focused on the effects of associations with a company's corporate ability (CA) and its corporate social responsibility (CSR) on consumers' product evaluations. Their study has found that both of CA and CSR influenced product evaluation but CA association has a stronger effect than CSR associations. Brown and Dacin (1997) have, however, claimed that there are few researches on how corporate association impacts product responses. Accordingly, some of researchers have found the variables to moderate or to mediate the relationship between the corporate association and the product responses. In particular, there has been existed a few of studies that tested the influence of the reputation on the product-relevant perceived risk, but the effects of two types of the corporate association on the product-relevant perceived risk were not identified so far. The primary goal of this article is to identify and empirically examine some variables to moderate the effects of CA association and CSR association on the perceived risk of the product. In this articles, we take the concept of the corporate associations that Brown and Dacin (1997) had proposed. CA association is those association related to the company's expertise in producing and delivering its outputs and CSR association reflected the organization's status and activities with respect to its perceived societal obligations. Also, this study defines the risk, which is the uncertainty or loss of the product and corporate that consumers have taken in a particular purchase decision or after having purchased. The risk is classified into product-relevant performance risk and financial risk. Performance risk is the possibility or the consequence of a product not functioning at some expected level and financial risk is the monetary loss one perceives to be incurring if a product does not function at some expected level. In relation to consumer's knowledge, expert consumers have much of the experiences or knowledge of the product in consumer position and novice consumers does not. The model tested in this article are shown in Figure 1. The model indicates that both of CA association and CSR association influence on performance risk and financial risk. In addition, the effects of CA and CSR are moderated by product category knowledge (product knowledge) and product category involvement (product involvement). In this study, the relationships between the corporate association and product-relevant perceived risk are hypothesized as the following form. For example, Hypothesis 1a($H_{1a}$) is represented that CA association has a positive influence on the performance risk of consumer. Also, the hypotheses that identified some variables to moderate the effects of two types of corporate association on the perceived risk of the product are laid down. One of the hypotheses of the interaction effect is Hypothesis 3a($H_{3a}$), it is described that consumer's knowledges of the product moderates the negative relationship between CA association and product-relevant performance risk. A field experiment was conducted in order to examine our model. The company tested was not real but imagined to meet the internal validity. Water purifiers were used for our study. Four scenarios have been developed and described as the imaginary company: Type A with both of superior CA and CSR, Type B with superior CSR and inferior CA, Type C with superior CA and inferior CSR, and Type D with both inferior of CA and CSR. The respondents of this study were classified into four groups. One type of four scenarios (Type A, B, C, or D) in its questionnaire was given to the respondent who filled out questions. Data were collected by means of a self-administered questionnaire to the respondents, chosen in convenience. A total of 300 respondents filled out the questionnaire but 207 were used for further analysis. Table 1 indicates that the scales in this study are reliable because the range of coefficients of Cronbach's $\alpha$ are from 0.85 to 0.92. The composite reliability is in the range of 0,85 to 0,92 and average variance extracted is in 0.72-0.98 range that is higher than the base level of 0.6. As shown in Table 2, the values for CFI, NNFI, root-mean-square error approximation (RMSEA), and standardized root-mean-square residual (SRMR) are acceptably close to the standards suggested by Hu and Bentler (1999):.95 for CFI and NNFI,.06 for RMSEA, and.08 for SRMR. We also tested discriminant validity provided by Fornell and Larcker (1981). As shown in Table 2, we found strong evidence for discriminant validity between each possible pair of latent constructs in all samples. Given that these batteries of overall goodness-of-fit indices were accurate and that the model was developed on theoretical bases, and given the high level of consistency across samples, this enables us to proceed the previously defined scales. We used the moderated hierarchical regression analysis to test the influence of the corporate association(CA and CSR associations) on product-relevant perceived risk(performance and financial risks) and to identify the variables moderating the relationship between the corporate association and product-relevant performance risk. In this study, dependent variables are performance and financial risk. CA and CSR associations are described the independent variables. The moderating variables are product category knowledge and product category involvement. The results are, as expected, found that CA association has statistically a significant influence on the perceived risk of the product, but CSR association does not. Product category knowledge and involvement moderate the relationship between the CA association and the perceived risk of the product. However, the effect of CSR association on the perceived risk of the product is not moderated by the consumers' knowledge and involvement. For this result, it is necessary for a corporate to inform its customers CA association more than CSR association so that they could be felt to be the reduction of the perceived risk. The important theoretical contribution of this research is the meanings that two types of corporate association that Brown and Dacin(1997), and Brown(1998) have proposed replicated the difference of the effects on product evaluation. According to Hunter(2001), it was an important affair to accomplish the validity of a particular study and we had to take about ten studies to deduce a strict study. Next, there is the contribution of the this study to find that the effects of corporate association on the perceived risk of the product are varied by the moderator variables. In particular, the moderating effect of knowledge on the relationship between corporate association and product-relevant perceived risk has not been tested in Korea. In the managerial implications of this research, we suggest the necessity to stress the ability that corporate manufactures the product well(CA association) than the accomplishment of corporate's social obligation(CSR association). This study suffers from various limitations that imply future research directions. The moderating effects of product category knowledge and involvement on the relationship between corporate association and perceived risk need to be replicated. Next, future research could explore whether the mediated effects of the perceived risk has the relationship between corporate association and consumer's product purchase. In addition, to ensure the external validity of the study will be needed to use realistic company, not artificial.

  • PDF

A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings (종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템)

  • Ku, Min Jung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.85-109
    • /
    • 2018
  • Recommender system recommends the items expected to be purchased by a customer in the future according to his or her previous purchase behaviors. It has been served as a tool for realizing one-to-one personalization for an e-commerce service company. Traditional recommender systems, especially the recommender systems based on collaborative filtering (CF), which is the most popular recommendation algorithm in both academy and industry, are designed to generate the items list for recommendation by using 'overall rating' - a single criterion. However, it has critical limitations in understanding the customers' preferences in detail. Recently, to mitigate these limitations, some leading e-commerce companies have begun to get feedback from their customers in a form of 'multicritera ratings'. Multicriteria ratings enable the companies to understand their customers' preferences from the multidimensional viewpoints. Moreover, it is easy to handle and analyze the multidimensional ratings because they are quantitative. But, the recommendation using multicritera ratings also has limitation that it may omit detail information on a user's preference because it only considers three-to-five predetermined criteria in most cases. Under this background, this study proposes a novel hybrid recommendation system, which selectively uses the results from 'traditional CF' and 'CF using multicriteria ratings'. Our proposed system is based on the premise that some people have holistic preference scheme, whereas others have composite preference scheme. Thus, our system is designed to use traditional CF using overall rating for the users with holistic preference, and to use CF using multicriteria ratings for the users with composite preference. To validate the usefulness of the proposed system, we applied it to a real-world dataset regarding the recommendation for POI (point-of-interests). Providing personalized POI recommendation is getting more attentions as the popularity of the location-based services such as Yelp and Foursquare increases. The dataset was collected from university students via a Web-based online survey system. Using the survey system, we collected the overall ratings as well as the ratings for each criterion for 48 POIs that are located near K university in Seoul, South Korea. The criteria include 'food or taste', 'price' and 'service or mood'. As a result, we obtain 2,878 valid ratings from 112 users. Among 48 items, 38 items (80%) are used as training dataset, and the remaining 10 items (20%) are used as validation dataset. To examine the effectiveness of the proposed system (i.e. hybrid selective model), we compared its performance to the performances of two comparison models - the traditional CF and the CF with multicriteria ratings. The performances of recommender systems were evaluated by using two metrics - average MAE(mean absolute error) and precision-in-top-N. Precision-in-top-N represents the percentage of truly high overall ratings among those that the model predicted would be the N most relevant items for each user. The experimental system was developed using Microsoft Visual Basic for Applications (VBA). The experimental results showed that our proposed system (avg. MAE = 0.584) outperformed traditional CF (avg. MAE = 0.591) as well as multicriteria CF (avg. AVE = 0.608). We also found that multicriteria CF showed worse performance compared to traditional CF in our data set, which is contradictory to the results in the most previous studies. This result supports the premise of our study that people have two different types of preference schemes - holistic and composite. Besides MAE, the proposed system outperformed all the comparison models in precision-in-top-3, precision-in-top-5, and precision-in-top-7. The results from the paired samples t-test presented that our proposed system outperformed traditional CF with 10% statistical significance level, and multicriteria CF with 1% statistical significance level from the perspective of average MAE. The proposed system sheds light on how to understand and utilize user's preference schemes in recommender systems domain.

Stage Costume Design for Performance Hamlet (II) - The Study on Pattern and Manufactured Product - (햄릿 공연을 위한 무대의상 디자인 (II) - 패턴 및 실물제작 -)

  • Kim, Soon-Ku;Hwang, Seong-Won
    • Fashion & Textile Research Journal
    • /
    • v.6 no.1
    • /
    • pp.41-50
    • /
    • 2004
  • This research proposes the on-stage costumes for the play Hamlet of Shakespeare performed by Yunheedan Guhri Pae - the Street Theater Troupe. Stage costumes have an important role in displaying the characteristics of each characters to the audience and has big visual effects. However, in order to design the costumes in the object viewpoints of the audience, the survey on the images of the characters who had actually watched the performance was taken place and proposed the costume design according to the results of the survey. Hamlet a: This result was applied to propose a sweater in black color, black leather pants and vest. Hamlet b: This result was applied to propose hooded coat in purple in middle level of brightness and color spectrum and yellow coat. For free image, loose pants in blue and vest in the same color tone were proposed. Gertrude a: This result was applied to use purple (violet) with reddish tone to propose the formation of a dress applying tailored suit. Gertrude b: This result was applied to propose purple gown and the one-piece dress with black laces. Ophelia a: This result was applied to propose feminine white dress and cape in purple color tone. Ophelia b: This result was applied to propose dyed and weaved clothes. Through the surveys as above, the images of each character was driven in adjectives, and using the results driven from the brightness, coloration, and color, color images were proposed. Only one costume cannot make up for the stage costumes and because it exists as an element of stage production, it is true that costumes are limited in some areas. However, that limit can become the motive of the costume. There is a limit, which the designer cannot produce the costumes as he or she had designed but I believe it is the center of the on-stage customers to display the characteristics of the characters according to the given concept. The limit of this research is the fact that because the costumes were designed so they fit the conditions already given, thus it was difficult to regard the process of designing and producing the costume as a project done according to the interaction. And in the future, if it is possible, I wish for the joint research with the people responsible for stage art to take place as a practical stage art. It was possible to produce practical costume since they were produced for actual performance and the production of costumes considering the dance steps, line of flow, and acting, was able to reduce the trial and error on stage. Through this research, I felt that the understanding and smooth interaction on diverse other areas not limited to the costume design should be taken place and believe that this was a research that proposes new research method since there had been only a few previous research regarding the on-stage costumes for actual performances. Therefore, this research had depended on the surveys given to the audiences to endow objectivity, however, I wish this research can contribute to defining effective process and methods for the on-stage costumes with more active researches with diverse methods and in diverse areas. I am sorry that the costume production for all the characters and all the scenes in Hamlet couldn't be done due to many limitations. As the following research assignment, I am planning on designing the costumes for all the scenes.

A Fully Digital Automatic Gain Control System with Wide Dynamic Range Power Detectors for DVB-S2 Application (넓은 동적 영역의 파워 검출기를 이용한 DVB-S2용 디지털 자동 이득 제어 시스템)

  • Pu, Young-Gun;Park, Joon-Sung;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.58-67
    • /
    • 2009
  • This paper presents a fully digital gain control system with a new high bandwidth and wide dynamic range power detector for DVB-S2 application. Because the peak-to-average power ratio (PAPR) of DVB-S2 system is so high and the settling time requirement is so stringent, the conventional closed-loop analog gain control scheme cannot be used. The digital gain control is necessary for the robust gain control and the direct digital interface with the baseband modem. Also, it has several advantages over the analog gain control in terms of the settling time and insensitivity to the process, voltage and temperature variation. In order to have a wide gain range with fine step resolution, a new AGC system is proposed. The system is composed of high-bandwidth digital VGAs, wide dynamic range power detectors with RMS detector, low power SAR type ADC, and a digital gain controller. To reduce the power consumption and chip area, only one SAR type ADC is used, and its input is time-interleaved based on four power detectors. Simulation and measurement results show that the new AGC system converges with gain error less than 0.25 dB to the desired level within $10{\mu}s$. It is implemented in a $0.18{\mu}m$ CMOS process. The measurement results of the proposed IF AGC system exhibit 80-dB gain range with 0.25-dB resolution, 8 nV/$\sqrt{Hz}$ input referred noise, and 5-dBm $IIP_3$ at 60-mW power consumption. The power detector shows the 35dB dynamic range for 100 MHz input.