• Title/Summary/Keyword: Error level

Search Result 2,511, Processing Time 0.032 seconds

Analysis of Solar Simulator's Uncertainty Factor for Maximum Output Power Test of Photovoltaic Module (PV모듈의 발전성능시험을 위한 Solar Simulator의 측정불확도 요인 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • In this paper, we analyzed the elements of measurement uncertainty on electrical performance test which are the most important things in photovoltaic module performance test. Repeating the performance test by 6 men, the measurement uncertainty could be calculated. In this experiment, Solar Simulator (A-Class pulse type) used for domestic certificate test of PV module is Pasan IIIb (Balval, Switzerland). The possible elements of the measurement uncertain that could effect electrical performance test of PV module are reference cell, spectrum correction, error from measurement repetition, test condition, stability and uniformity of artificial solar simulator. To find the measurement uncertainty, 6 men repeated the test by 10 times. And the results were that numerical average value was 124.44W and measurement uncertainty was $124.44W{\pm}0.36W$ with 95% confidence level for 125W PV module(KD-5125).

Development of Weather Forecast Models for a Short-term Building Load Prediction (건물의 단기부하 예측을 위한 기상예측 모델 개발)

  • Jeon, Byung-Ki;Lee, Kyung-Ho;Kim, Eui-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this work, we propose weather prediction models to estimate hourly outdoor temperatures and solar irradiance in the next day using forecasting information. Hourly weather data predicted by the proposed models are useful for setting system operating strategies for the next day. The outside temperature prediction model considers 3-hourly temperatures forecasted by Korea Meteorological Administration. Hourly data are obtained by a simple interpolation scheme. The solar irradiance prediction is achieved by constructing a dataset with the observed cloudiness and correspondent solar irradiance during the last two weeks and then by matching the forecasted cloud factor for the next day with the solar irradiance values in the dataset. To verify the usefulness of the weather prediction models in predicting a short-term building load, the predicted data are inputted to a TRNSYS building model, and results are compared with a reference case. Results show that the test case can meet the acceptance error level defined by the ASHRAE guideline showing 8.8% in CVRMSE in spite of some inaccurate predictions for hourly weather data.

Novel Rate Control Scheme for Low Delay Video Coding of HEVC

  • Wu, Wei;Liu, Jiong;Feng, Lei
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.185-194
    • /
    • 2016
  • In this paper, a novel rate control scheme for low delay video coding of High Efficiency Video Coding (HEVC) is proposed. The proposed scheme is developed by considering a new temporal prediction structure of HEVC. In the proposed scheme, the relationship between bit rate and quantization step is exploited firstly to formulate an accurate quadratic rate-quantization (R-Q) model. Secondly, a method of determining the quantization parameters (QPs) for the first frames within a group of pictures is proposed. Thirdly, an accurate frame-level bit allocation method is proposed for HEVC. Finally, based on the proposed R-Q model and the target bit allocated for the frame, the QPs are predicted for coding tree units by using rate-distortion (R-D) optimization. We compare our scheme against that of three other state-of-the-art rate control schemes. Experimental results show that the proposed rate control scheme can increase the Bjøntegaard delta peak signal-to-noise ratio by 0.65 dB and 0.09 dB on average compared with the JCTVC-I0094 and JCTVC-M0036 schemes, respectively, both of which have been implemented in an HEVC test model encoder; furthermore, the proposed scheme achieves a similar R-D performance to Wang's scheme, as well as obtaining the smallest bit rate mismatch error of all the schemes.

The Effects of Screen Smart Devices on the Neck Flexion Angle

  • Lee, Jun Cheol;Kim, Kyung
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.7 no.2
    • /
    • pp.1051-1055
    • /
    • 2016
  • The purpose of this study was to investigate the effect of the screen size of smart devices on the bending angle of the cervical spine. The subjects of this study were 30 healthy adults(15 men and 15 women) who used smartphones and tablet PC(personal computer). The changes in the bending angle of the upper and lower cervical spine were measured in the subjects after they had used a smartphone and a tablet PC for 300 seconds each. To make sure that all subjects began in the same starting position, an angle-measuring instrument was used to set the angles of the ankle, knee, hip, and arm joints to 90 degree. The subjects were asked to keep the trunk straight. They were asked to hold a smartphone in their hand and to bend their neck so that they could look down at the screen. Once they began using the smartphone in this manner, they were free to change their posture. We used a paired t-test to compare the bending angle of the cervical spine on subjects who used smartphones and tablet PC in the long-term and short-term there production error of cervical and the significance level was cervical. The results showed that, when using a smartphone and a tablet PC for 300 seconds, there was no significant difference in the bending angle of the upper cervical spine(p>.05), although there was a significant difference in the bending angle of the lower cervical spine(p<.05).

An Automatic Diagnosis Method for Impact Location Estimation

  • Kim, Jung-Soo;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.295-300
    • /
    • 1998
  • In this paper, a real time diagnostic algorithm fur estimating the impact location by loose parts is proposed. It is composed of two modules such as the alarm discrimination module (ADM) and the impact-location estimation module(IEM). ADM decides whether the detected signal that triggers the alarm is the impact signal by loose parts or the noise signal. When the decision from ADM is concluded as the impact signal, the beginning time of burst-type signal, which the impact signal has usually such a form in time domain, provides the necessary data fur IEM. IEM by use of the arrival time method estimates the impact location of loose parts. The overall results of the estimated impact location are displayed on a computer monitor by the graphical mode and numerical data composed of the impact point, and thereby a plant operator can recognize easily the status of the impact event. This algorithm can perform the diagnosis process automatically and hence the operator's burden and the possible operator's error due to lack of expert knowledge of impact signals can be reduced remarkably. In order to validate the application of this method, the test experiment with a mock-up (flat board and reactor) system is performed. The experimental results show the efficiency of this algorithm even under high level noise and potential application to Loose Part Monitoring System (LPMS) for improving diagnosis capability in nuclear power plants.

  • PDF

Evaluation of RFID System for Location Based Services in the Building (건물 내의 위치기반 서비스를 위한 RFID 시스템)

  • Nam, Sang-Yep;An, Jin-Ung;Kim, Dong-Han
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • In this paper, different RFID tag types compliant with UHF frequency based RFID system were chosen to build RFID tag embedded concrete blocks. Then, by placing the tags in systematically varied depths of a concrete block, we could measure the RF signal attenuation pattern as the performance indicator of a specific concrete embedded RFID system. Experiments show that the concrete mixing ratio makes no significant difference in tag detection performance level. The significance of the developed RFID system lies in its capability of eliminating GPS's error and shadow area as well as providing smart infrastructure for supporting truly pervasive ubiquitous computing applications especially in outdoor environment.

Design and Implementation of a Blood-Glucose Meter to Reduce Hematocrit Interference (적혈구 용적률 간섭 보정을 위한 혈당 측정 기기의 설계 및 구현)

  • Cho, Hyuntae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.4
    • /
    • pp.167-175
    • /
    • 2020
  • A blood-glucose meter is one of the in vitro diagnostic devices to measure and control the glucose concentration of diabetics. In order to measure the glucose level in the blood, the common method is to measure the amount of electrons, that is, the output current generated by glucose oxidation after a blood sample is inserted into the test strip containing an enzyme. The hematocrit is an obstacle in measuring accurate blood glucose concentration. This paper deals with the design and implementation of a blood-glucose meter to correct the hematocrit interference. We propose a sequential method which measures impedance using the alternating current and then measures glucose in the blood using the direct current. In addition, this paper introduces how to use commercial glucose strips based on the proposed system. Finally, we conducted the performance evaluation of the proposed system by comparing the measured current and impedance with those of the references. As a result, the standard deviation of the current measurement is approximately 0.6nA and the impedance measurement error for measuring the hematocrit is approximately within 1%. The proposed system will improve the accuracy of the conventional blood-glucose meter by reducing the hematocrit interference.

Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD) Core and Addition of New Fuel Elements

  • Craft, Aaron E.;Hilton, Bruce A.;Papaioannou, Glen C.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.200-210
    • /
    • 2016
  • The neutron radiography reactor (NRAD) is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA) reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS) is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM) standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D) = 125 is $5.96{\times}10^6n/cm^2/s$ with a $2{\sigma}$ standard error of $2.90{\times}10^5n/cm^2/s$. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

A Study on the Early Evaluation of Compressive Strength of Ultra-High Strength Concrete Using 50, 60℃ Warm Water Curing (50, 60℃ 온수양생을 이용한 초고강도 콘크리트의 강도 조기 평가)

  • Lee, Jong-Seok;Myung, Ro-Oun;Paik, Min-Soo;Gong, Min-Ho;Ha, Jung-Soo;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.73-75
    • /
    • 2011
  • In this study, prediction of later-age compressive strength of ultra-high strength concrete, based on the accelerated strength of concrete cured in 50, 60℃ warm water was investigated. W/B of 32, 23.5, 19% 3 levels were examined. And the specimens were cured in 50, 60℃ warm water. The results showed reliable accuracy by regression relation between 28day strength cured by standard curing method and accelerated strength of the concrete cured in warm water. And the specimens cured in 50, 60℃ showed more high strength development. So 60℃ curing could be considered in order to reduce the measurement error. As a result, the feasibility of 50, 60℃ warm water curing method at high strength level was confirmed.

  • PDF

Evaluation Methodology of Solar Rights Using Autodesk VIZ for Apartment Buildings (Autodesk VIZ를 이용한 공동주택의 일조권평가방법에 관한 연구)

  • Moon, Ki Hoon;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.6 no.3
    • /
    • pp.35-42
    • /
    • 2006
  • The apartment buildings now covers more than 50% of the total residential types in Korea and the urban residential area becomes increasingly congested with newly constructed high-rise apartment buildings. Judicial precedents require, for securing the solar rights in the residential area, that the consecutive sunshine duration should be at least two hours from 9:00 to 15:00 or the accumulative sunshine duration should be at least four hours from 8:00 to 16:00 as of the winter solstice. Disputes are increasing, however, on infringed solar rights and view rights for the neighboring structures as cases occur where the requirement cannot be satisfied in congested residential areas. The sunshine duration scan be assessed by measuring it on the site of the dispute, but it is impracticable to actually measure it for every case on the winter solstice, only one day out of the whole year. At a trial, therefore, 3D computer simulation is used to calculate the sunshine duration and determine the extent of infringement for submission of the evaluation to be used as the basis of the judgment. The simulation, however, may have an error in its result up to the program characteristics and the accuracy of the input data such as the structure shape and height, the distance between structures, and the ground level. This study, therefore, used a self-developed VIEW program with Autodesk VIZ 2006 to provide a simulation method for solar access evaluation, and verified its efficacy by comparing the results with the actual measurements.