• Title/Summary/Keyword: Error decision

Search Result 897, Processing Time 0.022 seconds

Effective PPG Signal Processing Method for Detecting Emotional Stimulus (감성 자극 판단을 위한 효과적인 PPG 신호 처리 방법)

  • Oh, Dong-Gi;Min, Byung-Seok;Kwon, Sung-Oh;Kim, Hyun-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5C
    • /
    • pp.393-402
    • /
    • 2012
  • In this study, we propose a signal processing algorithm to measure the arousal level of a human subject using a PPG(Photoplethysmography) sensor. From the measured PPG signals, the arousal level is determined by PPI(Pulse to Pulse Interval) and discrete-time signal processing. We ran psychophysical experiments displaying visual stimuli on TV display while measuring PPG signal from a finger, where the nature landscape scenes were used for restorative effect, and the urban environments were used to stimulate the stress. However, the measured PPG signals may include noise due to subject movement and measurement error, which results in incorrect detections. In this paper, to mitigate the noise impact on stimulus detection, we propose a detecting algorithm using digital signal processing methods and statistics of measured signals. A filter is adopted to remove a high frequency noise and adaptively designed taking into account the statistics of the measured PPG signals. Moreover we employ a hysteresis method to reduce the distortion of PPI in decision of emotional. Via experiment, we show that the proposed scheme reduces signal noise and improves stimulus detection.

A CP Detection Based SSS Detection Method for Initial Cell Search in 3GPP LTE FDD/TDD Dual Mode Downlink Receiver (3GPP LTE FDD/TDD 듀얼 모드 하향링크 수신기에서 초기 셀 탐색을 위한 CP 검출 기반의 SSS 검출 기법)

  • Kim, Jung-In;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.113-122
    • /
    • 2010
  • In this paper, we propose a CP (Cyclic Prefix) detection based SSS (Secondary Synchronization Signal) detection method for initial cell search in 3GPP LTE (3rd Generation Partnership Project Long Term Evolution) FDD/TDD (Frequency Division Duplex/Time Division Duplex) dual mode downlink receiver. In general, a blind coherent SSS detection method which can detect SSS without CP detection is applied. However, coherent detection method caused performance degradation by channel compensation error at high speed environment because it uses estimated CFR (Channel Frequency Response) at PSS (Primary Synchronization Signal), and it can be more serious problem in TDD mode due to increased distance between PSS and SSS. Also blind detectionhas the drawback of high computational complexity. Therefore, we proposed a CP type pre-decision structure with non-coherent SSS detection which has stable operation in high speed channel environments for 3GPP LTE TDD mode as well as FDD mode, and can reduce computational complexity by applying CP detection before SSS detection. Simulation results show that the proposed method has stable operation for 3GPP LTE TDD/FDD dual mode downlink receiver in various channel environments.

Improvement of Endoscopic Image using De-Interlacing Technique (De-Interlace 기법을 이용한 내시경 영상의 화질 개선)

  • 신동익;조민수;허수진
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.469-476
    • /
    • 1998
  • In the case of acquisition and displaying medical Images such as ultrasonography and endoscopy on VGA monitor of PC system, image degradation of tear-drop appears through scan conversion. In this study, we compare several methods which can solve this degradation and implement the hardware system that resolves this problem in real-time with PC. It is possible to represent high quality image display and real-time processing and acquisition with specific de-interlacing device and PCI bridge on our hardware system. Image quality is improved remarkably on our hardware system. It is implemented as PC-based system, so acquiring, saving images and describing text comment on those images and PACS networking can be easily implemented.metabolism. All images were spatially normalized to MNI standard PET template and smoothed with 16mm FWHM Gaussian kernel using SPM96. Mean count in cerebral region was normalized. The VOls for 34 cerebral regions were previously defined on the standard template and 17 different counts of mirrored regions to hemispheric midline were extracted from spatially normalized images. A three-layer feed-forward error back-propagation neural network classifier with 7 input nodes and 3 output nodes was used. The network was trained to interpret metabolic patterns and produce identical diagnoses with those of expert viewers. The performance of the neural network was optimized by testing with 5~40 nodes in hidden layer. Randomly selected 40 images from each group were used to train the network and the remainders were used to test the learned network. The optimized neural network gave a maximum agreement rate of 80.3% with expert viewers. It used 20 hidden nodes and was trained for 1508 epochs. Also, neural network gave agreement rates of 75~80% with 10 or 30 nodes in hidden layer. We conclude that artificial neural network performed as well as human experts and could be potentially useful as clinical decision support tool for the localization of epileptogenic zones.

  • PDF

Performance Analysis of the Channel Equalizers for Partial Response Channels (부분 응답 채널을 위한 채널 등화기들의 성능 분석에 관한 연구)

  • Lee, Sang-Kyung;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.739-752
    • /
    • 2002
  • Recently, to utilize the limited bandwidth effectively, the concept of partial response (PR) signaling has widely been adopted in both the high-speed data transmission and high-density digital recording/playback systems such as digital microwave, digital subscriber loops, hard disk drives, digital VCR's and digital versatile recordable disks and so on. This paper is concerned with adaptive equalization of partial response channels particularly for the magnetic recording channels. Specifically we study how the PR channel equalizers work for different choices of desired or reference signals used for adjusting the equalizer weights. In doing so, we consider three different configurations that are actually implemented in the commercial products mentioned above. First of all, we show how to compute the theoretical values of the optimum Wiener solutions derived by minimizing the mean-squared error (MSE) at the equalizer output. Noting that this equalizer MSE measure cannot be used to fairly compare the three configurations, we propose to use the data MSE that is computer just before the final detector for the underlying PR system. We also express the data MSE in terms of the channel impulse response values, source data power and additive noise power, thereby making it possible to compare the performance of the configurations under study. The results of extensive computer simulation indicate that our theoretical derivation is correct with high precision. Comparing the three configurations, it also turns out that one of the three configurations needs to be further improved in performance although it has an apparent advantage over the others in terms of memory size when implemented using RAM's for the decision feedback part.

Development and Field Application of Apparatus for Determination of Limit State Design Strength Characteristics in Weathered Ground (한계상태설계법 지반정수 산정을 위한 풍화대 강도특성 측정장치의 개발 및 현장적용에 관한 연구)

  • Kim, Ki Seog;Kim, Jong Hoon;Choi, Sung-oong
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.164-179
    • /
    • 2020
  • Applying the limit state design method to geotechnical structures, accuracy and reliability of its design are mainly affected by parameters for geotechnical site characteristics, such as unit weight, Poisson's ratio, deformation modulus, cohesion and frictional angle. When the structures are located in weathered ground, especially, cohesion and frictional angle of ground are closely related with decision of parameters for structures' load and ground's resistance. Therefore, the accurate determination of these parameters, which are commonly obtained from field measurement, such as borehole shear test, are essential for optimum design of geotechnical structures. The 38 case studies, in this study, have been analyzed for understanding the importance of these parameters in designing the ground structures. From these results, importance of field measurement was also ascertained. With these evaluations, an apparatus for determining the strength characteristics, which are fundamental in limit state design (LSD) method, have been newly developed. This apparatus has an improved function as following the ASTM suggestion. Through the field application of this apparatus, the strong point of minimizing the possibility of error occurrence during the measurement has been verified and authors summarized that the essential parameters for LSD can be qualitatively obtained by this apparatus for determination of strength characteristics of weathered ground.

Development of Naïve-Bayes classification and multiple linear regression model to predict agricultural reservoir storage rate based on weather forecast data (기상예보자료 기반의 농업용저수지 저수율 전망을 위한 나이브 베이즈 분류 및 다중선형 회귀모형 개발)

  • Kim, Jin Uk;Jung, Chung Gil;Lee, Ji Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.839-852
    • /
    • 2018
  • The purpose of this study is to predict monthly agricultural reservoir storage by developing weather data-based Multiple Linear Regression Model (MLRM) with precipitation, maximum temperature, minimum temperature, average temperature, and average wind speed. Using Naïve-Bayes classification, total 1,559 nationwide reservoirs were classified into 30 clusters based on geomorphological specification (effective storage volume, irrigation area, watershed area, latitude, longitude and frequency of drought). For each cluster, the monthly MLRM was derived using 13 years (2002~2014) meteorological data by KMA (Korea Meteorological Administration) and reservoir storage rate data by KRC (Korea Rural Community). The MLRM for reservoir storage rate showed the determination coefficient ($R^2$) of 0.76, Nash-Sutcliffe efficiency (NSE) of 0.73, and root mean square error (RMSE) of 8.33% respectively. The MLRM was evaluated for 2 years (2015~2016) using 3 months weather forecast data of GloSea5 (GS5) by KMA. The Reservoir Drought Index (RDI) that was represented by present and normal year reservoir storage rate showed that the ROC (Receiver Operating Characteristics) average hit rate was 0.80 using observed data and 0.73 using GS5 data in the MLRM. Using the results of this study, future reservoir storage rates can be predicted and used as decision-making data on stable future agricultural water supply.

Classification Tree Analysis to Assess Contributing Factors Influencing Biosecurity Level on Farrow-to-Finish Pig Farms in Korea (분류 트리 기법을 이용한 국내 일괄사육 양돈장의 차단방역 수준에 영향을 미치는 기여 요인 평가)

  • Kim, Kyu-Wook;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.33 no.2
    • /
    • pp.107-112
    • /
    • 2016
  • The objective of this study was to determine potential contributing factors associated with biosecurity level of farrow-to-finish pig farms and to develop a classification tree model to explore how these factors related to each other based on prediction model. To this end, the author analyzed data (n = 193) extracted from a cross-sectional study of 344 farrow-to-finish farms which was conducted between March and September 2014 aimed to explore swine disease status at farm level. Standardized questionnaires with information about basic demographical data and management practices were collected in each farm by on-site visit of trained veterinarians. For the classification of the data sets regarding biosecurity level as a dependent variable and predictor variables, Chi-squared Automatic Interaction Detection (CHAID) algorithm was applied for modeling classification tree. The statistics of misclassification risk was used to evaluate the fitness of the model in terms of prediction results. Categorical multivariate input data (40 variables) was used to construct a classification tree, and the target variable was biosecurity level dichotomized into low versus high. In general, the level of biosecurity was lower in the majority of farms studied, mainly due to the limited implementation of on-farm basic biosecurity measures aimed at controlling the potential introduction and transmission of swine diseases. The CHAID model illustrated the relative importance of significant predictors in explaining the level of biosecurity; maintenance of medical records of treatment and vaccination, use of dedicated clothing to enter the farm, installing fence surrounding the farm perimeter, and periodic monitoring of the herd using written biosecurity plan in place. The misclassification risk estimate of the prediction model was 0.145 with the standard error of 0.025, indicating that 85.5% of the cases could be classified correctly by using the decision rule based on the current tree. Although CHAID approach could provide detailed information and insight about interactions among factors associated with biosecurity level, further evaluation of potential bias intervened in the course of data collection should be included in future studies. In addition, there is still need to validate findings through the external dataset with larger sample size to improve the external validity of the current model.

Automated Construction Progress Management Using Computer Vision-based CNN Model and BIM (이미지 기반 기계 학습과 BIM을 활용한 자동화된 시공 진도 관리 - 합성곱 신경망 모델(CNN)과 실내측위기술, 4D BIM을 기반으로 -)

  • Rho, Juhee;Park, Moonseo;Lee, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.5
    • /
    • pp.11-19
    • /
    • 2020
  • A daily progress monitoring and further schedule management of a construction project have a significant impact on the construction manager's decision making in schedule change and controlling field operation. However, a current site monitoring method highly relies on the manually recorded daily-log book by the person in charge of the work. For this reason, it is difficult to take a detached view and sometimes human error such as omission of contents may occur. In order to resolve these problems, previous researches have developed automated site monitoring method with the object recognition-based visualization or BIM data creation. Despite of the research results along with the related technology development, there are limitations in application targeting the practical construction projects due to the constraints in the experimental methods that assume the fixed equipment at a specific location. To overcome these limitations, some smart devices carried by the field workers can be employed as a medium for data creation. Specifically, the extracted information from the site picture by object recognition technology of CNN model, and positional information by GIPS are applied to update 4D BIM data. A standard CNN model is developed and BIM data modification experiments are conducted with the collected data to validate the research suggestion. Based on the experimental results, it is confirmed that the methods and performance are applicable to the construction site management and further it is expected to contribute speedy and precise data creation with the application of automated progress monitoring methods.

Analysis of Rainfall-Runoff Characteristics in Gokgyochun Basin Using a Runoff Model (유출모형을 이용한 곡교천 유역의 강우-유출 특성 분석)

  • Hwan, Byungl-Ki;Cho, Yong-Soo;Yang, Seung-Bin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.404-411
    • /
    • 2019
  • In this study, the HEC-HMS was applied to determine rainfall-runoff processes for the Gokgyuchun basin. Several sub-basins have large-scale reservoirs for agricultural needs and they store large amounts of initial runoff. Three infiltration methods were implemented to reflect the effect of initial loss by reservoirs: 'SCS-CN'(Scheme I), 'SCS-CN' with simple surface method(Scheme II), and 'Initial and Constant rate'(Scheme III). Modeling processes include incorporating three different methods for loss due to infiltration, Clark's UH model for transformation, exponential recession model for baseflow, and Muskingum model for channel routing. The parameters were calibrated using an optimization technique with trial and error method. Performance measures, such as NSE, RAR, and PBIAS, were adopted to aid in the calibration processes. The model performance for those methods was evaluated at Gangcheong station, which is the outlet of study site. Good accuracy in predicting runoff volume and peak flow, and peak time was obtained using the Scheme II and III, considering the initial loss, whereas Scheme I showed low reliability for storms. Scheme III did not show good matches between observed and simulated values for storms with multi peaks. Conclusively, Scheme II provided better results for both single and multi-peak storms. The results of this study can provide a useful tool for decision makers to determine master plans for regional flood control management.

Risk Analysis and Selection of the Main Factors in Fishing Vessel Accidents Through a Risk Matrix (위험도 매트릭스를 이용한 어선의 사고 위험도 분석과 사고 주요 요인 도출에 관한 연구)

  • WON, Yoo-Kyung;KIM, Dong-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.139-150
    • /
    • 2019
  • Though, fishing vessel accidents account for 70 % of all maritime accidents in Korean waters, most research has focused on identifying causes and developing mitigation policies in an attempt to reduce this rate. However, predicting and evaluating accident risk needs to be done before the implementation of such reduction measures. For this reasons, we havve performed a risk analysis to calculate the risk of accidents and propose a risk criteria matrix with 4 quadrants, within one of which forecasted risk is plotted for the relative comparison of risks. For this research, we considered 9 types of fishing vessel accidents as reported by Korea Maritime Safety Tribunal (KMST). Given that no risk evaluation criteria have been established in Korea, we established a two-dimensional frequency-consequence grid consisting of four quadrants into which paired frequency and consequence for each type of accident are presented. With the simple structure of the evaluation model, one can easily verify the effect of frequency and consequence on the resulting risk within each quadrant. Consequently, these risk evaluation results will help a decision maker employ more realistic risk mitigation measures for accident types situated in different quadrants. As an application of the risk evaluation matrix, accident types were further analyzed using accident causes including human error (factor) and appropriate risk reduction options may be established by comparing the relative frequency and consequence of each accident cause.