본 연구는 오차교정모형을 활용해 건화물선과 유조선 일간 해상운임의 동태적 특성과 예측 정확도를 분석한다. 공적분된 시계열 자료의 오차를 계산하기 위해 본 연구는 공통 확률적 추세 모형(Common Stochastic Trend Model, CSTM 모형)과 벡터오차교정모형(Vector Error Correction Model, VECM 모형)을 활용한다. 먼저, CSTM 모형의 오차를 사용한 오차교정모형이 VECM 모형의 경우보다 교정계수(adjustment speed coefficient)가 경제학적 이론에 더 부합하는 결과를 보인다. 나아가 조정결정계수(adjR2) 측면에서도 CSTM 모형의 경우가 VECM 모형에 비해 모형 적합도가 큰 것으로 나타난다. 둘째, 예측 정확도를 판단하는 지표인 평균 절대 오차와 평균 절대 척도 오차를 살펴보면, CSTM 모형의 오차를 이용한 모형이 VECM 모형의 오차를 이용한 모형보다 총 15가지 경우 중에 12가지 경우에서 예측 정확도가 높은 것을 확인할 수 있다. 미래 연구주제로서 1) 두 가지 오차를 모두 활용하는 분석 및 예측 과제, 2) 원자재 및 에너지 자원 시장의 데이터를 추가하는 과제, 3) 오차항의 부호에 따라 교정계수를 다르게 추정하는 과제 등을 제시한다.
본 연구에서는 Long Short Term Memory (LSTM) 신경망과 Gated Recurrent Unit(GRU) 신경망을 Internet of Things (IoT) 파워미터에 적용하여 단기 전력사용량 예측방법을 제안하고, 실제 가정의 전력사용량 데이터를 토대로 예측 성능을 분석한다. 성능평가 지표로써 Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Percentage Error (MPE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE)를 이용한다. 실험 결과는 GRU 기반의 모델이 LSTM 기반의 모델에 비해 MAPE 기준으로 4.52%, MPE 기준으로 5.59%만큼의 성능개선을 보였다.
The objective of this study is to develop short-term prevention measures for minimizing possible human error in nuclear power facilities. To accomplish this objective, a group of subject matter experts (SMEs) were formed, which is consisting of those from regulatory bodies, academia, industries and research institutes. Prevention measures were established for urgent execution in nuclear power facilities on a short-term basis. This study suggests short-term measures for reducing human error on three different areas; (1) strengthening worker management, (2) enhancing workplace environments and working methods, and (3) improving the technologies regulating human factors. Under the leadership of the Ministry of Science and Technology, these short-term measures will be pursued and implemented systematically by utility and regulatory agencies. The details of prevention measures are presented and discussed.
Purpose: The purpose of this study is to apply the machine and deep learning methodology on error terms which are continuously auto-generated on the sensors with specific time period and prove the improvement effects of power generator prediction diagnosis system by comparing detection ability. Methods: The SVM(Support Vector Machine) and MLP(Multi Layer Perception) learning procedures were applied for predicting the target values and sequentially producing the error terms for confirming the detection improvement effects of suggested application. For checking the effectiveness of suggested procedures, several detection methodologies such as Cusum and EWMA were used for the comparison. Results: The statistical analysis result shows that without noticing the sequential trivial changes on current diagnosis system, suggested approach based on the error term diagnosis is sensing the changes in the very early stages. Conclusion: Using pattern of error terms as a diagnosis tool for the safety control process with SVM and MLP learning procedure, unusual symptoms could be detected earlier than current prediction system. By combining the suggested error term management methodology with current process seems to be meaningful for sustainable safety condition by early detecting the symptoms.
Taking the integrated Chebyshev-type counting function of the appropriate order, we improve the error term in Park's prime geodesic theorem for hyperbolic manifolds with cusps. The obtained estimate coincides with the best known result in the Riemann surfaces case.
본 연구의 목적은 VLCC(Very Large Crude Oil Carrier) 운임에 영향을 미치는 주요 결정요인의 장기적 탄성치를 추정하는 것이다. 이를 위해 본 연구는 영국 해운 전문 기업인 클락슨이 공표하는 연간 VLCC 운임을 종속변수로, 원유(Crude oil) 물동량, VLCC 선복량, 벙커유 가격, Libor 금리를 설명변수로 사용하였다. 본 연구는 벡터오차수정모형(Vector Error Correction Model; VECM)을 사용하여 운임 결정 장기균형함수를 추정하였으며, 추정결과 물동량 1.0% 증가 시 운임 6.4% 증가, 선복량 1.0% 증가 시 운임 1.9% 감소, 벙커유 가격 1.0% 증가 시 운임 0.3% 감소, 금리 1.0% 증가 시 운임은 0.18% 증가하는 것으로 나타났다. 벙커유 가격의 경우 일반적인 직관과 반대되는 마이너스(-) 부호로 계수가 추정되었는데, 이는 설명변수 중 벙커유 가격이나 금리 등의 2차 변수가 운임에 미치는 영향력은 적은 반면 직접적인 수급 변수가 운임을 결정하는 주요 요인이기 때문인 것으로 이해된다. 후속연구에서 컨테이너선, 건화물선 등 다른 선종들을 대상으로 연구를 수행하고 다양한 선종별 운임의 결정요인을 비교 분석하는 것이 필요하다.
This paper focused on forecasting a short-term production of oysters, which have been farmed in Korea, with distinct periodicity of production by year, and different production level by month. To forecast a short-term oyster production, this paper uses monthly data (260 observations) from January 1990 to August 2011, and also adopts several econometrics methods, such as Multiple Regression Analysis Model (MRAM), Seasonal Autoregressive Integrated Moving Average (SARIMA) Model, and Vector Error Correction Model (VECM). As a result, first, the amount of short-term oyster production forecasted by the multiple regression analysis model was 1,337 ton with prediction error of 246 ton. Secondly, the amount of oyster production of the SARIMA I and II models was forecasted as 12,423 ton and 12,442 ton with prediction error of 11,404 ton and 11,423 ton, respectively. Thirdly, the amount of oyster production based on the VECM was estimated as 10,425 ton with prediction errors of 9,406 ton. In conclusion, based on Theil inequality coefficient criterion, short-term prediction of oyster by the VECM exhibited a better fit than ones by the SARIMA I and II models and Multiple Regression Analysis Model.
이 논문에서는 신호점 매칭 오차(constellation-matched error: CME)와 비 신호점 매칭 오차(non-constellation-matched error: non-CME)를 선형 결합한 오차 신호 기반의 블라인드 등화 알고리즘을 제안한다. 새로운 오차 신호는 초기 수렴을 달성하기 위한 non-CME 항과 출력 신호의 심볼간 간섭(intersymbol interference: ISI) 성능을 개선하기 위한 CME 항을 포함하도록 설계되었고, 결합 인자를 통해 두 오차 항을 제어한다. 오차 항을 제어하여 등화 단계에 적합한 오차 신호를 발생함으로써 기존 알고리즘에 비해 수렴 속도와 심볼간 간섭 제거 성능을 개선하였다. 다중경로 채널에 잡음을 부가한 조건하에서 이루어진 64-QAM과 256-QAM 신호에 대한 모의실험에서 제안 방법이 CMA와 CMA+DD 동시 등화에 비해 우수한 것으로 나타났다.
통신 시스템에서의 더 늘어난 대역폭(Band Width)의 수요로 인해 집적회로(Integrated Circuit)에서 더 높은 동작 주파수(Operating Frequency)를 필요로 하게 되었다. 고주파 영역에서는 SRF(Self Resonance Frequency) 문제와 소자 값의 정확성(Accuracy)에 대한 문제 때문에 정수소자(Lumped Element)를 이용하여 해석을 할 수 없으며 이로 인하여 어떠한 회로의 전기적 특성을 평가함에 있어서 전송선로(Transmission Line)를 이용하여 해석을 하는 것은 중요한 역할을 하게 되었다. 이러한 해석을 위해 순수한 내부 특성을 얻기 위하여 디 임베딩(De-Embedding)이라는 기법이 사용되고 있으나, 알려진 몇 가지의 방법들은 인터커넥터 부분을 완벽히 나타내지 못한다. 따라서 본 논문에서는 1-Port 측정을 기반으로 한 8-Term Error을 이용한 디 임베딩(De-Embedding) 방법을 이용하여 넓은 주파수 영역에서의 교정 값을 얻는 방법에 대하여 소개하고자 한다.
Journal of Advanced Marine Engineering and Technology
/
제21권1호
/
pp.66-70
/
1997
In this paper a new learning algorithm for curvature smoothing and improved generalization for multi-layer neural networks is proposed. To enhance the generalization ability a constraint term of hidden neuron activations is added to the conventional output error, which gives the curvature smoothing characteristics to multi-layer neural networks. When the total cost consisted of the output error and hidden error is minimized by gradient-descent methods, the additional descent term gives not only the Hebbian learning but also the synaptic weight decay. Therefore it incorporates error back-propagation, Hebbian, and weight decay, and additional computational requirements to the standard error back-propagation is negligible. From the computer simulation of the time series prediction with Santafe competition data it is shown that the proposed learning algorithm gives much better generalization performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.