• Title/Summary/Keyword: Error Term

Search Result 1,009, Processing Time 0.028 seconds

Analysis and Forecasting of Daily Bulk Shipping Freight Rates Using Error Correction Models (오차교정모형을 활용한 일간 벌크선 해상운임 분석과 예측)

  • Ko, Byoung-Wook
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.2
    • /
    • pp.129-141
    • /
    • 2023
  • This study analyzes the dynamic characteristics of daily freight rates of dry bulk and tanker shipping markets and their forecasting accuracy by using the error correction models. In order to calculate the error terms from the co-integrated time series, this study uses the common stochastic trend model (CSTM model) and vector error correction model (VECM model). First, the error correction model using the error term from the CSTM model yields more appropriate results of adjustment speed coefficient than one using the error term from the VECM model. Furthermore, according to the adjusted determination coefficients (adjR2), the error correction model of CSTM-model error term shows more model fitness than that of VECM-model error term. Second, according to the criteria of mean absolute error (MAE) and mean absolute scaled error (MASE) which measure the forecasting accuracy, the results show that the error correction model with CSTM-model error term produces more accurate forecasts than that of VECM-model error term in the 12 cases among the total 15 cases. This study proposes the analysis and forecast tasks 1) using both of the CSTM-model and VECM-model error terms at the same time and 2) incorporating additional data of commodity and energy markets, and 3) differentiating the adjustment speed coefficients based the sign of the error term as the future research topics.

Short-term Power Consumption Forecasting Based on IoT Power Meter with LSTM and GRU Deep Learning (LSTM과 GRU 딥러닝 IoT 파워미터 기반의 단기 전력사용량 예측)

  • Lee, Seon-Min;Sun, Young-Ghyu;Lee, Jiyoung;Lee, Donggu;Cho, Eun-Il;Park, Dae-Hyun;Kim, Yong-Bum;Sim, Isaac;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.79-85
    • /
    • 2019
  • In this paper, we propose a short-term power forecasting method by applying Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural network to Internet of Things (IoT) power meter. We analyze performance based on real power consumption data of households. Mean absolute error (MAE), mean absolute percentage error (MAPE), mean percentage error (MPE), mean squared error (MSE), and root mean squared error (RMSE) are used as performance evaluation indexes. The experimental results show that the GRU-based model improves the performance by 4.52% in the MAPE and 5.59% in the MPE compared to the LSTM-based model.

Short-Term Human Factors Engineering Measures for Minimizing Human Error in Nuclear Power Facilities (원자력 시설에서의 인적 오류 발생 최소화를 위한 인간공학적 단기대책수립에 관한 연구)

  • Lee, Dhong-Hoon;Byun, Seong-Nam;Lee, Yong-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.121-125
    • /
    • 2007
  • The objective of this study is to develop short-term prevention measures for minimizing possible human error in nuclear power facilities. To accomplish this objective, a group of subject matter experts (SMEs) were formed, which is consisting of those from regulatory bodies, academia, industries and research institutes. Prevention measures were established for urgent execution in nuclear power facilities on a short-term basis. This study suggests short-term measures for reducing human error on three different areas; (1) strengthening worker management, (2) enhancing workplace environments and working methods, and (3) improving the technologies regulating human factors. Under the leadership of the Ministry of Science and Technology, these short-term measures will be pursued and implemented systematically by utility and regulatory agencies. The details of prevention measures are presented and discussed.

A Study on the Prediction Diagnosis System Improvement by Error Terms and Learning Methodologies Application (오차항과 러닝 기법을 활용한 예측진단 시스템 개선 방안 연구)

  • Kim, Myung Joon;Park, Youngho;Kim, Tai Kyoo;Jung, Jae-Seok
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.783-793
    • /
    • 2019
  • Purpose: The purpose of this study is to apply the machine and deep learning methodology on error terms which are continuously auto-generated on the sensors with specific time period and prove the improvement effects of power generator prediction diagnosis system by comparing detection ability. Methods: The SVM(Support Vector Machine) and MLP(Multi Layer Perception) learning procedures were applied for predicting the target values and sequentially producing the error terms for confirming the detection improvement effects of suggested application. For checking the effectiveness of suggested procedures, several detection methodologies such as Cusum and EWMA were used for the comparison. Results: The statistical analysis result shows that without noticing the sequential trivial changes on current diagnosis system, suggested approach based on the error term diagnosis is sensing the changes in the very early stages. Conclusion: Using pattern of error terms as a diagnosis tool for the safety control process with SVM and MLP learning procedure, unusual symptoms could be detected earlier than current prediction system. By combining the suggested error term management methodology with current process seems to be meaningful for sustainable safety condition by early detecting the symptoms.

A Study on Key Factors Affecting VLCC Freight Rate (초대형 원유운반선 운임에 영향을 미치는 주요 요인에 관한 연구)

  • AHN, Young-gyun;KO, Byoung-wook
    • The Journal of shipping and logistics
    • /
    • v.34 no.4
    • /
    • pp.545-563
    • /
    • 2018
  • This study analyzes the major factors affecting the freight rates of Very Large Crude-Oil Carriers (VLCC) using co-integration and vector error correction models (VECM). Particularly, we estimate the long-term equilibrium function that determines the VLCC freight rate by conducting difference conversion. In the VECM regression analysis, the error term converges toward long-term balance irrespective of whether the previous period's freight rate is bigger or smaller than the long-term equilibrium rate. Thus, even if the current rate is different from the long-term rate, it eventually converges to the long-term balance irrespective of a boom or recession. This study follows Ko and Ahn (2018), which analyzed the factors affecting the chemical carrier freight rate and was published in the Journal of Shipping and Logistics (Vol. 34, No. 2). It is expected that an academic comparison of the results of each study will be possible if further research is conducted on other vessel types, such as container ships and dry cargo vessels.

A Study on Forecast of Oyster Production using Time Series Models (시계열모형을 이용한 굴 생산량 예측 가능성에 관한 연구)

  • Nam, Jong-Oh;Noh, Seung-Guk
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.185-195
    • /
    • 2012
  • This paper focused on forecasting a short-term production of oysters, which have been farmed in Korea, with distinct periodicity of production by year, and different production level by month. To forecast a short-term oyster production, this paper uses monthly data (260 observations) from January 1990 to August 2011, and also adopts several econometrics methods, such as Multiple Regression Analysis Model (MRAM), Seasonal Autoregressive Integrated Moving Average (SARIMA) Model, and Vector Error Correction Model (VECM). As a result, first, the amount of short-term oyster production forecasted by the multiple regression analysis model was 1,337 ton with prediction error of 246 ton. Secondly, the amount of oyster production of the SARIMA I and II models was forecasted as 12,423 ton and 12,442 ton with prediction error of 11,404 ton and 11,423 ton, respectively. Thirdly, the amount of oyster production based on the VECM was estimated as 10,425 ton with prediction errors of 9,406 ton. In conclusion, based on Theil inequality coefficient criterion, short-term prediction of oyster by the VECM exhibited a better fit than ones by the SARIMA I and II models and Multiple Regression Analysis Model.

Adaptive Blind Equalization Controlled by Linearly Combining CME and Non-CME Errors (CME 오차와 non-CME 오차의 선형 결합에 의해 제어되는 적응 블라인드 등화)

  • Oh, Kil Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.3-8
    • /
    • 2015
  • In this paper, we propose a blind equalization algorithm based on the error signal linearly combined a constellation-matched error (CME) and a non-constellation-matched error (non-CME). The new error signal was designed to include the non-CME term for reaching initial convergence and the CME term for improving intersymbol interference (ISI) performance of output signals, and it controls the error terms through a combining factor. By controlling the error terms, it generates an appropriate error signal for equalization process and improves convergence speed and ISI cancellation performance compared to those of conventional algorithms. In the simulation for 64-QAM and 256-QAM signals under the multipath channel and additive noise conditions, the proposed method was superior to CMA and CMA+DD concurrent equalization.

De-Embedding Method Using 8-Term Error Based on 1-Port Calculation (1-포트 측정을 기반으로 한 8-Term Error De-Embedding 기법)

  • Song, Minsoo;Kim, Kwangho;Nah, Wansoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.125-126
    • /
    • 2015
  • 통신 시스템에서의 더 늘어난 대역폭(Band Width)의 수요로 인해 집적회로(Integrated Circuit)에서 더 높은 동작 주파수(Operating Frequency)를 필요로 하게 되었다. 고주파 영역에서는 SRF(Self Resonance Frequency) 문제와 소자 값의 정확성(Accuracy)에 대한 문제 때문에 정수소자(Lumped Element)를 이용하여 해석을 할 수 없으며 이로 인하여 어떠한 회로의 전기적 특성을 평가함에 있어서 전송선로(Transmission Line)를 이용하여 해석을 하는 것은 중요한 역할을 하게 되었다. 이러한 해석을 위해 순수한 내부 특성을 얻기 위하여 디 임베딩(De-Embedding)이라는 기법이 사용되고 있으나, 알려진 몇 가지의 방법들은 인터커넥터 부분을 완벽히 나타내지 못한다. 따라서 본 논문에서는 1-Port 측정을 기반으로 한 8-Term Error을 이용한 디 임베딩(De-Embedding) 방법을 이용하여 넓은 주파수 영역에서의 교정 값을 얻는 방법에 대하여 소개하고자 한다.

  • PDF

Time Series Prediction Using a Multi-layer Neural Network with Low Pass Filter Characteristics (저주파 필터 특성을 갖는 다층 구조 신경망을 이용한 시계열 데이터 예측)

  • Min-Ho Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.66-70
    • /
    • 1997
  • In this paper a new learning algorithm for curvature smoothing and improved generalization for multi-layer neural networks is proposed. To enhance the generalization ability a constraint term of hidden neuron activations is added to the conventional output error, which gives the curvature smoothing characteristics to multi-layer neural networks. When the total cost consisted of the output error and hidden error is minimized by gradient-descent methods, the additional descent term gives not only the Hebbian learning but also the synaptic weight decay. Therefore it incorporates error back-propagation, Hebbian, and weight decay, and additional computational requirements to the standard error back-propagation is negligible. From the computer simulation of the time series prediction with Santafe competition data it is shown that the proposed learning algorithm gives much better generalization performance.

  • PDF