• Title/Summary/Keyword: Error Propagation Model

Search Result 305, Processing Time 0.023 seconds

ERROR PROPAGATION ANALYSIS FOR IN-ORBIT GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.92-95
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The radiometric model of GOCI has been validated through radiometric ground test. From this ground test result, GOCI radiometric model has been changed from second order to third order. In this paper, the radiometric test performed to evaluate the radiometric nonlinearity is described and the GOCI radiometric error propagation is analyzed. The GOCI radiometric calibration is based on onboard calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). The radiometric model error due to the dark current nonlinearity is considered as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

ERROR ANALYSIS FOR GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.187-190
    • /
    • 2007
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The nonlinear radiometric model for GOCI will be validated through ground test. The GOCI radiometric calibration is based on on-board calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). In this paper, the GOCI radiometric error propagation is analyzed. The radiometric model error due to the dark current nonlinearity is analyzed as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

Radio Propagation Model and Spatial Correlation Method-based Efficient Database Construction for Positioning Fingerprints (위치추정 전자지문기법을 위한 전파전달 모델 및 공간상관기법 기반의 효율적인 데이터베이스 생성)

  • Cho, Seong Yun;Park, Joon Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.774-781
    • /
    • 2014
  • This paper presents a fingerprint database construction method for WLAN RSSI (Received Signal Strength Indicator)-based indoor positioning. When RSSI is used for indoor positioning, the fingerprint method can achieve more accurate positioning than trilateration and centroid methods. However, a FD (Fingerprint Database) must be constructed before positioning. This step is a very laborious process. To reduce the drawbacks of the fingerprint method, a radio propagation model-based FD construction method is presented. In this method, an FD can be constructed by a simulator. Experimental results show that the constructed FD-based positioning has a 3.17m (CEP) error. In this paper, a spatial correlation method is presented to estimate the NLOS(Non-Line of Sight) error included in the FD constructed by a simulator. As a result, the NLOS error of the FD is reduced and the performance of the error compensated FD-based positioning is improved. The experimental results show that the enhanced FD-based positioning has a 2.58m (CEP) error that is a reasonable performance for indoor LBS (Location Based Service).

Dispersion-corrected Finite Element Method for the Stress Wave Propagation (응력파 전파 수치모의를 위한 유한요소법의 분산오차 저감에 관한 연구)

  • Hwang, In-Ho;Choi, Don-Hee;Hong, Sang-Hyun;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.39-44
    • /
    • 2008
  • Stress wave propagation plays an important role in many engineering problems for reducing industrial noise and vibrations. In this paper, the dispersion-corrected finite element model is proposed for reducing the dispersion error in simulation of stress wave propagation. At eliminating the numerical dispersion error arising from the numerical simulation of stress wave propagation, numerical dispersion characteristics of the wave equation based finite element model are analyzed and some dispersion control scheme are proposed. The validity of the dispersion correction techniques is demonstrated by comparing the numerical solutions obtained using the present techniques.

  • PDF

An Adaptive Control for the Propagation Errors Incurred by DCT Coefficient-Dropping Transcoder

  • Kim, Jin-Soo;Kim, Jae-Gon;Seo, Kwang-Deok;Yun, Mong-Han
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.559-568
    • /
    • 2007
  • This paper presents a new distortion control scheme with a simple estimation model for the propagation errors incurred by dropping some parts of the bitstream in a frame dropping-coefficient dropping (FD-CD) transcoder. The primary goal of this paper is to facilitate bit-rate conversions and rate-distortion controls in the compressed domain without introducing a full decoding and reencoding system in the pixel domain. First, the error propagation behavior over several frame sequences due to coefficient dropping is investigated on the basis of statistical and empirical properties. Then, such properties are used to develop a simple estimation model for the CD distortion accounting for the characteristics of the underlying coded-frame. Finally, the proposed estimation model allows us to determine the amount of coefficient dropping and to effectively allocate rate-distortions into coded-frames. Experimental results show that the proposed estimation model accurately describes the characteristics of propagation errors adaptively in the compressed domain and can be easily applied to distortion control over different kinds of video sequences.

  • PDF

Studies on Error Propagation by Simulation Model -Main description of experments of aero-triangulation- (횡응모형에 의한 오차전파에 관한 연구 -공중삼각측량의 실험을 중심으로-)

  • 백은기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.1
    • /
    • pp.4021-4037
    • /
    • 1976
  • This paper describes the actual experiments of the error propagation and studies of analytical photogrammetry using the simulation method in which we can find the causes of the errors. These studies and the results give the valuable data which are very effective for systematically controlling the errors in aerial triangulation. The main contents in my paper are as follows: 1. Dose the scale errors in the successive models in the form of normal distribution appear when the observation errors propagate in the form of normal distribution\ulcorner 2. In what form does this scale error propagation in the actual model appear\ulcorner 3. When the causes of the scale error propagation are found, is the evaluation standard determined normally\ulcorner 4. What degree of influence is there form the constant errors\ulcorner I have done several experiments using the simulation method technique to solve the complicated error propgation of aerial triangulation which is the effective means to research the relations between cause and effect. In this paper, the studies have concentrated on the following points of simulation experiments. (1) The first part descries how we can produce the soft program of the simulation experiment. (2) The second part is the method propagating the errors in the simulation models and the kinds of errors. (3) The final part is the most important; that is the analyzing and evaluation of control during actual work. From the above-mentioned points, it is said that these studies are a very important development in the field of controlling and managing aerial photogrammetry and especially in the case of error propagation, we can clearly find the causes of the errors and steps and parts of errors generated when we use these techniques.

  • PDF

Learning Generative Models with the Up-Propagation Algorithm (생성모형의 학습을 위한 상향전파알고리듬)

  • ;H. Sebastian Seung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.327-329
    • /
    • 1998
  • Up-Propagation is an algorithm for inverting and learning neural network generative models. Sensory input is processed by inverting a model that generates patterns from hidden variables using top-down connections. The inversion process is iterative, utilizing a negative feedback loop that depends on an error signal propagated by bottom-up connections. The error signal is also used to learn the generative model from examples. the algorithm is benchmarked against principal component analysis in experiments on images of handwritten digits.

  • PDF

Two-position alignment of strapdown inertia navigation system

  • Lee, Jang-Gyu;Kim, Jin-Won;Park, Heong-won;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.665-671
    • /
    • 1994
  • Some extended results in the study of two-position alignment for strapdown inertial navigation system are presented. In [1], an observability analysis for two-position alignment was done by analytic rank test of the stripped observability matrix and numerical calculation of the error covariance propagation using ten-state error model. In this paper, it is done by an analytic approach which utilizes the nonsingular condition of the determinant of simplified stripped observability matrix and by numerical calculation of the error covariance propagation accomplished in more cases than [1], and the twelve-state error model including vertical channel is used instead of ten-state error model. In addition, it is confirmed that this approach more clearly produces the same result as shown in the original work in terms of complete observability and there exist some better two-position configurations than [1] using the twelve-state error model.

  • PDF

Improving Forecast Accuracy of Wind Speed Using Wavelet Transform and Neural Networks

  • Ramesh Babu, N.;Arulmozhivarman, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.559-564
    • /
    • 2013
  • In this paper a new hybrid forecast method composed of wavelet transform and neural network is proposed to forecast the wind speed more accurately. In the field of wind energy research, accurate forecast of wind speed is a challenging task. This will influence the power system scheduling and the dynamic control of wind turbine. The wind data used here is measured at 15 minute time intervals. The performance is evaluated based on the metrics, namely, mean square error, mean absolute error, sum squared error of the proposed model and compared with the back propagation model. Simulation studies are carried out and it is reported that the proposed model outperforms the compared model based on the metrics used and conclusions were drawn appropriately.

A Study on LEE Model Application for Propagation Loss Estimation of UHF band in Mountain Area (산악지형에서의 UHF대역 전파손실예측을 위한 LEE모델 적용방안 연구)

  • Lee, Changwon;Jeon, Yongchan;Shin, Imseob;Kim, Jin-Goog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.167-172
    • /
    • 2015
  • In this paper, we have compared some radio propagation models in order to verify the performance of W.C.Y LEE propagation model in mountain area. The four propagation models, which are Okumura-Hata, ITU-R P.525, Egli and W.C.Y. LEE, are analyzed by comparing the differences between measured values and propagation loss estimation values. And a correction method for W.C.Y LEE model is suggested to improve the performance of W.C.Y. LEE model with measured data in mountain area. Simulation results show that the estimation error using W.C.Y LEE model is the lowest among four propagation models. Also, the results show that the corrected W.C.Y LEE model with suggested method improves the performance of propagation loss estimation.