• Title/Summary/Keyword: Error Detection/Correction

Search Result 189, Processing Time 0.025 seconds

The Phase Error Correction Scheme Using the Iterative Signal Bandwidth Estimation in SAR Imaging System (SAR Imaging 시스템의 신호 대역폭 추정에 따른 위상오차 제거기법 연구)

  • 김형주;최정희
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.463-466
    • /
    • 2000
  • SAR imaging 시스템 전파환경에서 목표물의 정보를 성공적으로 추출해 내기 위해서는 반사된 신호를 수신할 때 Coherent detection이 필수적이다. 수신시 Incoherent detection은 복소 위상오차 형태로 나타나서 실제 목표물의 영상에 심각한 Degradation을 야기시켜 치명적인 결과를 초래하게된다. 본 논문에서는 하나의 목표물에서 수신되는 신호를 파동방정식으로부터 모델링하고 모델링된 신호의 각 주파수대의 조합에 의해 전체 수신신호로부터 위상오차의 기울기를 유도한다. 더욱더 정확한 위상오차를 추정하기 위해 추정된 위상오차로부터 수신신호에 포함된 오차를 제거하고, 오차가 제거된 신호의 대역폭을 추정한다. 추정된 대역폭에 맞도록 알고리즘에 재 적용시켜 교정되지 못한 오차를 추정해 나간다. 이때 반복적인 위상오차 제거기법을 적용하고 Iteration의 종료를 자동으로 결정하기 위해 지능형 대역폭 추정 기법을 제시한다. 컴퓨터의 모의 실험에서, 위상오차를 포함한 수신 신호로부터 알고리즘을 적용하여 오차를 제거하고,, Wavefront Reconstruction 기법에 적용시켜 알고리즘의 성능을 영상으로 확인한다.

  • PDF

A restoration of the transfer error that used edge direction of an image (영상의 모서리 방향을 이용한 전송 오차의 복원)

  • Lee, Chang-Hee;Ryou, Hee-Sahm;Ra, Keuk-Hwan
    • 전자공학회논문지 IE
    • /
    • v.44 no.1
    • /
    • pp.15-19
    • /
    • 2007
  • A study to have read does an improvement of an error restoration technology based on the edge direction interpolation that a stop image cared for inside frame correction more than with an image restoration way of a transfer error or with an aim. A way proposed to is based on edge direction detection method of a block utilizing the edge direction which will adjust a part damaged a sweater to a remaining part here. The rest of error pixel used non linear Midian filter for process later data information by the final stage and did interpolation. The examination result shows a good recuperation tendency and low accounts time of a way proposed to realization possibility of a real time image processing.

Soft Decision Detection Method for Turbo-coded STBC Using High-order Modulation Schemes (고차원 변조 방식에서의 터보 부호화된 시공간 블록 부호 기술을 위한 최적의 연판정 검출 방법)

  • Kim, Young-Min;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.562-571
    • /
    • 2010
  • Forward error correction (FEC) coding schemes using iterative soft decision detection (SDD) information are mandatory in most of the next generation wireless communication system, in order to combat inevitable channel imparirnents. At the same time, space-time block coding (STBC) schemes are used for the diversity gain. Therefore, SDD information has to be fed into FEC decoder. In this paper, we propose efficient SDD methods for turbo-coded STBC system using high order modulation such as QAM. We present simulation results of various SDD schemes for turbo-coded STBC systems, and show that the proposed methods can provide almost approximating performance to maximum likelihood detection with much less computational load.

A Method for Spelling Error Correction in Korean Using a Hangul Edit Distance Algorithm (한글 편집거리 알고리즘을 이용한 한국어 철자오류 교정방법)

  • Bak, Seung Hyeon;Lee, Eun Ji;Kim, Pan Koo
    • Smart Media Journal
    • /
    • v.6 no.1
    • /
    • pp.16-21
    • /
    • 2017
  • Long time has passed since computers which used to be a means of research were commercialized and available for the general public. People used writing instruments to write before computer was commercialized. However, today a growing number of them are using computers to write instead. Computerized word processing helps write faster and reduces fatigue of hands than writing instruments, making it better fit to making long texts. However, word processing programs are more likely to cause spelling errors by the mistake of users. Spelling errors distort the shape of words, making it easy for the writer to find and correct directly, but those caused due to users' lack of knowledge or those hard to find may make it almost impossible to produce a document free of spelling errors. However, spelling errors in important documents such as theses or business proposals may lead to falling reliability. Consequently, it is necessary to conduct research on high-level spelling error correction programs for the general public. This study was designed to produce a system to correct sentence-level spelling errors to normal words with Korean alphabet similarity algorithm. On the basis of findings reported in related literatures that corrected words are significantly similar to misspelled words in form, spelling errors were extracted from a corpus. Extracted corrected words were replaced with misspelled ones to correct spelling errors with spelling error detection algorithm.

Production of Spirometer 'The Spirokit' and Performance Verification through ATS 24/26 Waveform (휴대형 폐기능 검사기 'The Spirokit'의 제작 및 ATS 24/26파형을 통한 성능검증)

  • Byeong-Soo Kim;Jun-Young Song;Myung-Mo Lee
    • Journal of Korean Physical Therapy Science
    • /
    • v.30 no.3
    • /
    • pp.49-58
    • /
    • 2023
  • Background: This study aims to examine the useful- ness of the portable spirometer "The Spirokit" as a clinical diagnostic device through technology introduction, precision test, and correction. Design: Technical note Methods: "The Spirokit" was developed using a propeller-type flow rate and flow rate measurement method using infrared and light detection sensors. The level of agreement between the Pulmonary Waveform Generator and the measured values was checked to determine the precision of "The Spirokit", and the correction equation was included using the Pulmonary Waveform Generator software to correct the error range. The analysis was requested using the ATS 24/26 waveform recognized by the Ministry of Food and Drug Safety and the American Thoracic Society for the values of Forced Voluntary Capacity (FVC), Forced Expiratory Volume in 1second (FEV1), and Peak Expiratory Flow (PEF), which are used as major indicators for pulmonary function tests. All tests were repeated five times to derive an average value, and FVC and FEV1 presented accuracy and PEF presented accuracy as the result values. Results: FVC and FEV1 of 'The Spirokit' developed in this study showed accuracy within ± 3% of the error level in the ATS 24 waveform. The PEF value of 'The Spirokit' showed accuracy within the error level ± 12% of the ATS 26 waveform. Conclusion: Through the results of this study, the precision of 'The Spirokit' as a clinical diagnosis device was identified, and it was confirmed that it can be used as a portable pulmonary function test that can replace a spirometer.

A Detection Method for Irregularity of Ionospheric delay in Network RTK Environment (네트워크 RTK 환경에서 이온층 지연 변칙현상 검출 기법)

  • Ko, Jaeyoung;Shin, Mi Young;Han, Younghoon;Cho, Deuk Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2562-2568
    • /
    • 2015
  • This paper proposes a detection method for irregularity of ionospheric delay in network RTK (Real Time Kinematic) Environment. The linearity of network RTK correction provided to user can't be assured when a characteristic of temporal-spatial of ionospheric delay is rapidly changed due to geomagnetic storm or solar flare. Therefore, incorrect ambiguity can be resolved and positioning error can be increased. A detection method for irregularity of ionospheric delay is needed to provide reliable correction. In this paper, index to detect irregularity of ionospheric delay is calculated from dispersive corrections and occurrence of irregularity is judged by comparing index and thresholds.

Detection of Artificial Displacement of a Reflector by using GB-SAR Interferometry and Atmospheric Humidity Correction (GB-SAR 간섭기법을 이용한 반사체의 인위적 변위탐지 및 대기습도보정)

  • Lee, Jae-Hee;Lee, Hoon-Yol;Cho, Seong-Jun;Sung, Nak-Hun;Kim, Jung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.123-131
    • /
    • 2010
  • In this paper we applied Ground-Based Synthetic Aperture Radar(GB-SAR) interferometry to detect artificial displacement of a reflector and performed an atmospheric humidity correction to improve the accuracy. A series of GB-SAR images were obtained using a center frequency of 5.3 GHz with a range resolution of 25 cm and a azimuth resolution of $0.324^{\circ}$, all in full-polarization (HH, VV, VH, HV) modes. A triangular trihedral corner reflector was located 160 m away from the system, and the artificial displacements of 0-40 mm was implemented during the GB-SAR image acquisition. The result showed that the RMS error between the actual and measured displacements, averaged in all polarization data, was 1.22 mm, while the maximum error in case of the 40 mm displacement was 2.72 mm at HH-polarization. After the atmospheric correction with respect to the humidity, the RMS error was reduced to 0.52 mm. We conclude that a GB-SAR system can be used to monitor the possible displacement of artificial/natural scatterers and the stability assessment with sub-millimeter accuracy.

A Precise Heave Determination System Using Time-Differenced GNSS Carrier Phase Measurements

  • Cho, MinGyou;Kang, In-Suk;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.149-157
    • /
    • 2017
  • In this study, a system that precisely determines the heave of ship hull was designed using time-differenced GNSS carrier phase measurement, and the performance was examined. First, a technique that calculates precise position relative to the original position based on TDCP measurement for point positioning using only one receiver was implemented. Second, to eliminate the long-cycle drift error occurring due to the measurement error that has not been completely removed by time-differencing, an easily implementable high-pass filter was designed, and the optimum coefficient was determined through an experiment. In a static experiment based on the precise heave measurement system implemented using low-cost commercial GNSS receiver and PC, the heave could be measured with a precision of 2 cm standard deviation. In addition, in a dynamic experiment where it moved up and down with an amplitude of 48 cm and a cycle of 20 seconds, precise heave without drift error could be determined. The system proposed in this study can be easily used for many applications, such as the altitude correction of fish detection radar.

Orthogonal variable spreading factor encoded unmanned aerial vehicle-assisted nonorthogonal multiple access system with hybrid physical layer security

  • Omor Faruk;Joarder Jafor Sadiqu;Kanapathippillai Cumanan;Shaikh Enayet Ullah
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.213-225
    • /
    • 2023
  • Physical layer security (PLS) can improve the security of both terrestrial and nonterrestrial wireless communication networks. This study proposes a simplified framework for nonterrestrial cyclic prefixed orthogonal variable spreading factor (OVSF)-encoded multiple-input and multiple-output nonorthogonal multiple access (NOMA) systems to ensure complete network security. Various useful methods are implemented, where both improved sine map and multiple parameter-weighted-type fractional Fourier transform encryption schemes are combined to investigate the effects of hybrid PLS. In addition, OVSF coding with power domain NOMA for multi-user interference reduction and peak-toaverage power ratio (PAPR) reduction is introduced. The performance of $\frac{1}{2}$-rated convolutional, turbo, and repeat and accumulate channel coding with regularized zero-forcing signal detection for forward error correction and improved bit error rate (BER) are also investigated. Simulation results ratify the pertinence of the proposed system in terms of PLS and BER performance improvement with reasonable PAPR.

Error Concealment of MPEG-2 Intra Frames by Spatiotemporal Information of Inter Frames (인터 프레임의 시공간적 정보를 이용한 MPEG-2 인트라 프레임의 오류 은닉)

  • Kang, Min-Jung;Ryu, Chul
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.31-39
    • /
    • 2003
  • The MPEG-2 source coding algorithm is very sensitive to transmission errors due to using of variable-length coding. When the compressed data are transmitted, transmission errors are generated and error correction scheme is not able to be corrected well them. In the decoder error concealment (EC) techniques must be used to conceal errors and it is able to minimize degradation of video quality. The proposed algorithm is method to conceal successive macroblock errors of I-frame and utilize temporal information of B-frame and spatial information of P-frame In the previous GOP which is temporally the nearest location to I-frame. This method can improve motion distortion and blurring by temporal and spatial errors which cause at existing error concealment techniques. In network where the violent transmission errors occur, we can conceal more efficiently severe slice errors. This algorithm is Peformed in MPEG-2 video codec and Prove that we can conceal efficiently slice errors of I-frame compared with other approaches by simulations.

  • PDF