• Title/Summary/Keyword: Error Correction Signal

Search Result 241, Processing Time 0.029 seconds

${\frac{\pi}{4}}$-DQPSK with Nonredundant error correction in Nakagami fading channel (나카가미 페이딩채널에서 비용장 오류정정을 갖는 ${\frac{\pi}{4}}$-DQPSK의 성능분석)

  • 송석일;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.1948-1959
    • /
    • 1999
  • The error rate performance of the proposed $\pi$/4-differential quadructure phase shift keying( $\pi$/4-DQPSK) with nonredundant multiple error correction is analyzed for Nakagami fading channel. The scheme for differential detection of $\pi$/4-QPSK with nonredundant multiple error correction utilizes the output that employ the received signal delayed by more than two time slots. It was observed that the performance increased as the error correction capability increased.

  • PDF

Bit-selective Forward Error Correction for Digital Mobile Communications (디지털 이동통신을 위한 비트 선택적 에러정정부호)

  • Yang, Kyeong-Cheol;Lee, Jae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.198-202
    • /
    • 1988
  • In digital mobile communications received speech data are affected by burst errors as well as random errors. To overcome these errors we propose a bit-selective forward error correction scheme for the speech data which is sub-band coded at 13 kbps and transmitted over a 16 kbps channel. For a few error correcting codes the signal-to-noise ratio of error-corrected speech is obtained and compared through the simulation of mobile communication channels.

  • PDF

A Signal-Level Prediction Scheme for Rain-Attenuation Compensation in Satellite Communication Linkes (위성 통신 링크에서 강우 감쇠 보상을 위한 신호 레벨 예측기법)

  • 임광재;황정환;김수영;이수인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6A
    • /
    • pp.782-793
    • /
    • 2000
  • This paper presents a simple dynamical prediction scheme of the signal level which is attenuated and varied due to rain fading in satellite communication links using above 10GHz frequency bands. The proposed prediction scheme has four functional blocks for discrete-time low-pass filtering, slope-based prediction, mean-error correction and hybrid fixed/variable prediction margin allocation. Through simulations using Ka-band attenuation data obtained from the data measured over Ku-band by frequency-scaling, it is shown that the slope-based prediction with the mean-error correction has as small standard deviation of prediction error as below 1 dB, and that the error is about 1.5 to 2.5 times as small as that without the mean-error correction. The hybrid prediction margin allocation requires smaller average margin than those of both fixed and variable methods.

  • PDF

Co-Simulation for Systematic and Statistical Correction of Multi-Digital-to-Analog-Convertor Systems

  • Park, Youngcheol;Yoon, Hoijin
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.39-43
    • /
    • 2017
  • In this paper, a systematic and statistical calibration technique was implemented to calibrate a high-speed signal converting system containing multiple digital-to-analog converters (DACs). The systematic error (especially the imbalance between DACs) in the current combining network of the multi-DAC system was modeled and corrected by calculating the path coefficients for individual DACs with wideband reference signals. Furthermore, by applying a Kalman filter to suppress noise from quantization and clock jitter, accurate coefficients with minimum noise were identified. For correcting an arbitrary waveform generator with two DACs, a co-simulation platform was implemented to estimate the system degradation and its corrected performance. Simulation results showed that after correction with 4.8 Gbps QAM signal, the signal-to-noise-ratio improved by approximately 4.5 dB and the error-vector-magnitude improved from 4.1% to 1.12% over 0.96 GHz bandwidth.

A Study on The Correction of The Channel Equalizer Decision Error Using Channel Estimator (채널추정기를 이용한 등화기 결정오류 정정 알고리즘에 관한 연구)

  • Kim, Seon-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.18-24
    • /
    • 2017
  • The process of transmitting messages through a medium with a limited bandwidth or channel dispersion inevitably involves signal distortion and noise influxes, resulting in the degradation of transmission quality due to the inter-symbol interference and additional noise, which increases the error rate of the received symbols. The main role of the equalizer is to remove the channel distortion and noise from the received signal to recover the transmitted messages. A number of studies on the equalizer composed of a combination of linear filter and error control coding have shown that they played a key role in enhancing the transmission efficiency, which is essential for digital communication. This paper proposes a new algorithm to correct the residual symbol errors in the message signal. In general, equalizer performance improvement algorithms were developed to improve the initial convergence speed or steady-state error. In this paper, however, the equalizer input signal was reconstructed using the equalizer decision symbols and the channel estimates to directly correct the decision errors by analyzing the statistical characteristics of the difference signal between the actual received signal and the reconstructed signal.

Study on Error Correction Method for Advanced Terrestrial DMB (고품질 지상파 DMB를 위한 오류정정방식 연구)

  • Choi, Gyoo-Seok;Jeon, Byung-Chan;Park, In-Kyoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.69-75
    • /
    • 2010
  • Advanced T-DMB(Terrestial DMB )system which is a new portable mobile broadcasting system has been developed to increase data rate up to double of conventional T-DMB in same bandwidth while maintaining backward compatibility, using hierarchical modulation method. The Advanced T-DMB system realize high qualification of conventional T-DMB system by adding BPSK signal or QPSK signal as enhanced layer to existing DQPSK signal. The enhanced layer signal should be small enough to maintain backward compatibility and to minimize the coverage loss of existing T-DMB service area. But this causes the enhanced layer signal of Advanced T-DMB susceptible to fading effect in transmission channel. In this paper we applied the duo-binary turbo code which has powerful error correction capability to the enhanced layer signal for compensating channel distortion. And the computer simulation results about the performance of the duo-binary turbo code in Advanced T-DMB system are presented along with analysis comments.

Implementation and Performance Analysis of DGPS & RTK Error Correction Data Real-Time Transmission System for Long-Distance in Mobile Environments

  • Cho, Ik-Sung;Ha, Chang-Seung;Yim, Jae-Hong
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.291-291
    • /
    • 2002
  • DGPS(Differential Global Positioning System) and RTK(RealTime Kinematic) is in one of today's most widely used surveying techniques. But It's use is restricted by the distance between reference station and rover station and it is difficult to process data in realtime by it's own orgnizational limitation in precise measurement of positioning. To meet these new demands, In This paper, new DGPS and RTK correction data services through Internet and PSTN(Public Switched Telephony Network) have been proposed. For this purpose, we implemented performance a DGPS and RTK error correction data transmission system for long-distance using the internet and PSTN network which allows a mobile user to increase the distance at which the rover receiver is located from the reference in realtime. and we analyzed and compared DGPS and RTK performance by experiments through the Internet and PSTN network with the distance and the time.

  • PDF

Deep Learning Based Error Control in Electric Vehicle Charging Systems Using Power Line Communication (전력선 통신을 이용한 전기자동차 충전 시스템에서 딥 러닝 기반 오류제어)

  • Sun, Young Ghyu;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.150-158
    • /
    • 2018
  • In this paper, we introduce an electric vehicle charging system using power line communication and propose a method to correct the error by applying a deep learning algorithm when an error occurs in the control signal of an electric vehicle charging system using power line communication. The error detection and correction of the control signal can be solved through the conventional error correcting code schemes, but the error is detected and corrected more efficiently by using the deep learning based error correcting code scheme. Therefore, we introduce deep learning based error correction code scheme and apply this scheme to electric vehicle charging system using power line communication. we proceed simulation and confirm performance with bit error rate. we judge whether the deep learning based error correction code scheme is more effective than the conventional schemes.

The estimation of first order derivative phase error using iterative algorithm in SAR imaging system (SAR(Synthetic Aperture Radar)Imaging 시스템에서 제안 알고리즘의 반복수행을 통한 위상오차의 기울기 추정기법 연구)

  • 김형주;최정희
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.505-508
    • /
    • 2000
  • The success of target reconstruction in SAR(Synthetic Aperture Radar) imaging system is greatly dependent on the coherent detection. Primary causes of incoherent detection are uncompensated target or sensor motion, random turbulence in propagation media, wrong path in radar platform, and etc. And these appear as multiplicative phase error to the echoed signal, which consequently, causes fatal degradations such as fading or dislocation of target image. In this paper, we present iterative phase error estimation scheme which uses echoed data in all temporal frequencies. We started with analyzing wave equation for one point target and extend to overall echoed data from the target scene - The two wave equations governing the SAR signal at two temporal frequencies of the radar signal are combined to derive a method to reconstruct the complex phase error function. Eventually, this operation attains phase error correction algorithm from the total received SAR signal. We verify the success of the proposed algorithm by applying it to the simulated spotlight-mode SAR data.

  • PDF

The Study of LDPC for Railroad Signal control system (철도 통신신호에서의 LDPC에 적용에 관한 연구)

  • Park, Joo-Yul;Kim, Hyo-Sang;Park, Tae-Ki;Kim, Bong-Taek;Chung, Ki-Seok
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.442-446
    • /
    • 2009
  • As the railway transportation is getting faster and its operation speed has increased rapidly, its signal control has been complicated. For real time signal processing it is very important to prohibit any critical error from causing the system to malfunction. Today, most of the railroad's controling communications between wayside and train are made in one way. Therefore, by using a forward error correction technique, which receiver can actively correct the signal error, we can increase the performance and the stability of the railroad signaling system. In this paper, we introduce low density parity check(LDPC) that is used by next generation wireless communications and DMB technique. We verified that we can achieve low bit error rate(BER) in high signal to noise ratio(SNR) by using LDPC.

  • PDF