• Title/Summary/Keyword: Erosion.Deposition

Search Result 218, Processing Time 0.03 seconds

A study on the development of flood plain stability evaluation Index for flood risk assessment in floodplain (홍수터에서의 홍수위험도 예측을 위한 홍수터 안정성 평가 지수 개발)

  • Ku, Young Hun;Song, Chang Geun;Park, Yong Sung;Kim, Young Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.69-69
    • /
    • 2016
  • 하천은 크게 하도와 홍수터 그리고 제방으로 나눌 수 있으며, 국내에서는 다른 국가들과 다르게 대하천사업 이후 하천의 홍수터에 생태공원이나 체육시설 등과 같은 다양한 친수시설들을 조성하여 활용하고 있다. 하지만 최근 이상기후로 인해 홍수의 발생빈도 및 강도가 증가하고 있으며 여름철 집중호우에 의한 하천의 홍수위 상승은 이러한 친수시설의 침식과 퇴적 등과 같은 침수피해를 가중시키는 원인이 되기도 한다(Ku et al., 2013). 따라서 이와 같은 홍수피해를 예측하기 위해서는 홍수터를 포함한 복단면에서의 수치해석이 선행되어야 하며, 일반적으로 2차원 수치해석이 바람직한 것으로 제안되고 있다(Sato et al., 1989). 또한 하천에서의 2차원 수치해석 결과를 이용하여 침식과 퇴적에 관한 친수시설 안정성 평가 지수를 산정할 수 있으며, 산정된 지수를 통해 홍수터에서의 홍수피해를 예측할 수 있다. 다른 국가에서는 국내와 다르게 홍수터에 대한 활용이 거의 없기 때문에 홍수에 따른 홍수터에서의 위험도를 평가한 연구는 거의 없는 실정이며, 한국에서도 홍수터에서의 홍수위험도 평가에 대한 연구는 Song et al.(2016)이 다른 국가에서 활용하고 있는 제내지에서의 홍수위험도 평가 지수를 홍수터에 도입하여 실제 태풍에 의한 홍수위험도를 간접적으로 평가한 연구 정도가 대부분이라고 볼 수 있다. 따라서 본 연구에서는 Einstein-Krone 공식(1962)을 이용하여 침식과 퇴적을 동시에 고려할 수 있는 Transient Erosion and Deposition Index(TEDI)와 Steady Erosion and Deposition Index(SEDI)를 개발하였다. 또한 개발된 지수를 실제 자연하천에 적용하여 태풍 사상에서의 산정된 지수를 통해 홍수터 안정성을 평가하였다.

  • PDF

Formation and Deformation of the Fluid Mud Layer on Riverbeds under the Influence of the Hydrological Property and Organic Matter Composition (하천 수문 특성과 유기물 성상 변화에 따른 하상 유동상 퇴적물 거동 연구)

  • Trung Tin Huynh;Jin Hur;Byung Joon Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • This study employed field measurements and biogeochemical analysis to examine the effects of seasonal conditions (e.g., temperature and precipitation) and human intervention (e.g., dam or weir construction) on the chemical composition of dissolved organic matter, flocculation kinetics of suspended particulate matter, and formation of the fluid mud layer on riverbeds. The results indicated that a water environment with a substantial amount of biopolymers offered favorable conditions for flocculation kinetics during an algal bloom period in summer; a thick fluid mud layer was found to be predominated with cohesive materials during this period. However, after high rainfall, a substantial influx of terrigenous humic substances led to enhanced stabilization of the particulate matter, thereby decreasing flocculation and deposition, and the reduced biopolymer composition served to weaken the erosion resistance of the fluid mud on the riverbed. Moreover, a high-turbulence condition disaggregated the flocs and the fluid mud layer and resuspended the suspended particulate matter in the water column. This study demonstrates the mutual relationship that exists between biogeochemistry, flocculation kinetics, and the formation of the fluid mud layer on the riverine area during different seasons and under varying hydrological conditions. These findings are expected to eventually help inform the more optimal management of water resources, which is an urgent task in the face of anthropogenic stressors and climate change.

Erosion and Sedimentation Monitoring of Coastal Region using Time Series UAV Image (시계열 UAV 영상을 활용한 연안지역 침식·퇴적 변화 모니터링)

  • CHO, Gi-Sung;HYUN, Jae-Hyeok;LEE, Geun-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • In order to promote efficient coastal management, it is important to continuously monitor the characteristics of the terrain, which are changed by various factors. In this study, time series UAV images were taken of Gyeokpo beach. And the standard deviation of ±11cm(X), ±10cm(Y), and ±15cm(Z) was obtained as a result of comparing with the VRS measurement performance for UAV position accuracy evaluation. Therefore, it was confirmed that the tolerance of the digital map work rule was satisfied. In addition, as a result of monitoring the erosion and sedimentation changes using the DSM(digital surface model) constructed through UAV images, an average of 0.01 m deposition occurred between June 2018 and December 2018, and in December 2018 and June 2019. It was analyzed that 0.03m of erosion occurred. Therefore, 0.02m of erosion occurred between June 2018 and June 2019. From the topographical change analysis results, the area of erosion and sediment height was analyzed, and the area of erosion and sedimentation was widely distributed in the ±0.5m section. If we continuously monitor the topographical changes in the coastal regions by using the 3D terrain modeling results using the time series UAV images presented in this study, we can support the coastal management tasks such as supplement or dredging of sand.

The relationships of erosion and river channel change in the Geum river basin (금강유역의 침식과 하상변동과의 관계)

  • 양동윤;짐주용;이진영;이창범;정혜정
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.52-74
    • /
    • 2000
  • The basement rock of upper stream of Keum River Valley consists of Precambrian gneiss which is resistant to weathering. That of mid and lower stream valley, however, is mainly composed of Mesozoic granites which are vulnerable to weathering. The upstream part of Geum River Basin is typified by the deeply-incised and steep meandering streams, whereas mid and lower part is characterized by wide floodplain and gently dipping river bottom toward the Yellow Sea. In particular flooding deposits, in which are imprinted a number of repetitions of erosion and sedimentation during the Holocene, are widely distributed in the lower stream of Geum River Basin. For understanding of erosions in the mid and lower stream of Geum River Basin, the rate of erosion of each small basins were estimated by using the data of field survey, erosional experiments and GIS ananlysis. It was revealed that erosion rate appeared highest in granite areas, and overall areas, in this field survey were represented by relatively high erosion rates. By implemeatation of remote sensing and imagery data, the temporal changes of river bed sediments for about last 11 years were successfully monitored. Observed as an important phenomenon is that the river bed has been risen since 1994 when an embankment (Dyke) was constructed in the estuarine river mouth. From the results derived from the detailed river bed topographical map made in this investigation, the sedimentation of the lower river basin is considered to be deposited with about 5 cm/year for the last 11 years. Based on this river bed profile analysis by HEC-6 module, it is predicted that Geum River bed of Ganggyeong area is continuously rising up in general until 2004. Although extraction of a large amount of aggregates from Gongju to Ganggyung areas, the Ganggyung lower stream shows the distinct sedimentation. Therefore, it is interpreted that the active erosions of tributary basins Geum drainage basins can affect general river bed rising changes of Geum River.

  • PDF

Watershed-based PMF and Sediment-runoff Estimation Using Distributed Hydrological Model (분포형 수문모형을 이용한 유역기반의 PMF 및 유사-유출량 산정)

  • Yu, Wansik;Lee, Giha;Kim, Youngkyu;Jung, Kwansue
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.1-11
    • /
    • 2018
  • Probable Maximum Flood (PMF) is mostly applied for the designs of large-scale hydraulic structures and it is estimated by computing the runoff hydrograph where Probable Maximum Precipitation (PMP) is inserted as design rainfall. The existing PMP is estimated by transferring the heavy rainfall from all watersheds of korea to the design watershed, however, in this study, PMP was analyzed by selecting only rainfall events occurred in the design watershed. And then, Catchment-scale Soil Erosion Model (CSEM) was used to estimate the PMF and sediment-runoff yield according to the watershed-based estimated PMP. Although the PMF estimated in this study was lower than the existing estimated PMF in the Yongdam-dam basin, it was estimated to be higher than the 200-year frequency design flood discharge. In addition, sediment-runoff yield was estimated with a 0.05 cm of the maximum erosion and a 0.06 cm of the maximum deposition, and a total sediment-runoff yield of 168,391 tons according to 24-hour PMP duration.

Plasma Resistances of Yttria Deposited by EB-PVD Method (EB-PVD법으로 코팅된 Y2O3의 내플라즈마 특성)

  • Kim, Dae-Min;Yoon, So-Young;Kim, Kyeong-Beom;Kim, Hui-Sik;Oh, Yoon-Suk;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.707-712
    • /
    • 2008
  • Plasma resistant nanocrystalline $Y_2O_3$ films were deposited on alumina substrates through the electron-beam PVD technique. Increasing substrate temperature to $600^{\circ}C$ resulted in the textured microstructures with significantly enhanced adhesion force of the coating to the substrate. During the exposure to fluorine plasma, erosion rate of the coated specimen was higher than that of a sintered yttria specimen, but significantly lower than that of a single crystalline alumina. Considering the adhesion and erosion behaviors observed in the coated specimen prepared at $600^{\circ}C$, the deposition technique appears effective in reducing contamination particles generated from the ceramic parts in the plasma environment.

Characteristics of Nickel Oxide Thin Film Manufactured by Reactive Magnetron Sputtering Method (반응성 마그네트론 스퍼터링법에 의한 Nickel Oxide 박막 제작 특성에 관한 연구)

  • Kim, Gi-Bum;Hwang, Yun-Sik;Kim, Yeung-Shik;Park, Jang-Sick
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • In this paper, the DE(double erosion) cathode for the reactive magnetron sputtering system is developed for high deposition rate and high target utilization efficiency. The utilization efficiency of the developed DE cathode is 22% higher than that of normal SE(single erosion) cathode. Sputtering process for the nickel oxide thin films with the DE cathode is performed under the following conditions; power with $1kW{\sim}3kW$, pressure with 4mtorr and 8mtorr, oxygen flow ratio with $0%{\sim}80%$. As a result, the hysteresis phenomenon of discharge voltage in 4mtorr is lower than that in 8mtorr and the hysteresis phenomenon of discharge voltage is getting lower as the applied power is getting higher. The structure of cross section and surface roughness of the thin films are observed by FE-SEM and AFM. The structure of cross section of the thin films is columnar and the average surface roughness under oxygen flow ratio of 0%, 52.5% and 65.0% are $2.08{\AA}$, $2.20{\AA}$ and $0.854{\AA}$, respectively.

  • PDF

Meander Flume Outlet Sediment Scour Analysis of a Boxed Culvert

  • Thu Hien Thi Le;VanChienNguyen;DucHauLe
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.35-35
    • /
    • 2023
  • The main reason for its instability is sediment scouring downstream of hydraulic structures. Both physical and numerical models have been used to investigate the influence of soil properties on scour hole geometry. Nevertheless, no research has been conducted on resistance parameters that affect sedimentation and erosion. In addition, auxiliary structures like wing walls, which are prevalent in many real-world applications, have rarely been studied for their impact on morphology. The hydraulic characteristics of steady flow through a boxed culvert are calibrated using a 3D Computational Fluid Dynamics model compared with experimental data in this study, which shows a good agreement between water depth, velocity, and pressure profiles. Test cases showed that 0.015 m grid cells had the lowest NRMSE and MAE values. It is also possible to quantify sediment scour numerically by testing roughness/d50 ratios (cs) and diversion walls at a meander flume outlet. According to the findings, cs = 2.5 indicates a close agreement between numerical and analytical results of maximum scour depth after the culvert; four types of wing walls influence geometrical deformation of the meander flume outlet, resulting in erosion at the concave bank and deposition at the convex bank; two short headwalls are the most appropriate solution for accounting for small changes in morphology. A numerical model can be used to estimate sediment scour at the meander exit channel of hydraulic structures based on the roughness parameter of soil material and headwall type.

  • PDF

Numerical Analysis of Flow and Bed Changes for Selecting Optimized Section of Buried Water Pipeline Crossing the River (하천을 횡단하는 도수관로의 최적 매설구간 선정을 위한 흐름 및 하상변동 수치모의)

  • Jang, Eun-Kyung;Ji, Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1756-1763
    • /
    • 2014
  • A water pipeline buried under the riverbed could be exposed by bed erosion, therefore safe crossing sections should be analyzed for preventing damages due to the exposure of pipelines. In this study, flow and bed changes have been simulated using a two-dimensional numerical model for selecting the optimized section of pipeline crossing in the Geum River. As a result of simulation with the 20-year recurrence flood, sediment deposition has been distributed overall in the channel and bed erosion over 2 m has occurred near bridge piers. For the extreme flood simulation, the channel bed near the bridge piers has been eroded down to the buried depth. Therefore, within 140 m upstream of the bridge piers, bed erosion affects a buried pipeline in safety due to bridge pier effects and the crossing section over 150 m upstream of bridge piers is selected as a safe zone of a water pipeline.

Morphological changes of the beach and dune of The Taeanhaean National Park using VRS/RTK GPS - a case of Hakampo and Anmyeon beach - (VRS/RTK GPS 측량을 통한 태안해안국립공원 해빈과 해안사구의 지형변화 - 학암포와 안면 해안을 사례로 -)

  • PARK, Jung Won;OH, Sun Kwan;SEO, Seung Jik;SEO, Jong Cheol
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.161-172
    • /
    • 2012
  • The Taeanhaean National Park is located on the middle of the west coast of Korean peninsula. Due to the relatively high wave energy, large tidal range which is about 7m, and extremely complex coastal line, various coastal land-forms such as mud-flats, sand beaches, sand dunes, sea cliffs etc. are well distributed in this area, and thus various coastal ecosystems are well preserved. However, because of reckless sand diggings and construction of artificial structures in the coastal zone, the natural flowing and exchange of coastal deposits were disturbed and the erosion in the beach and the dune has been seriously accelerated. To understand of the causes of these problems, we tried three times periodical measuring with VRS/RTK GPS instrument at the Hakampo and Anmyeon beach. According to seasonal changes of the coast-line, beach area and cross-section of study sites, generally erosion process was dominated in the summer and deposition process was followed after summer.