Erm proteins methylate the specific adenine residue ($A_{2058}$, E. coli numbering) on 23S rRNA to confer the $MLS_B$ (macrolidelincosamide-streptogramin B) antibiotic resistance on a variety of microorganisms ranging from antibiotic producers to pathogens. When phylogenetic tree is constructed, two main clusters come out forming each cluster of Actinobacteria and Firmicutes. Two representative Erm proteins from each cluster were selected and their in vitro methylation activities were compared. ErmS and ErmE from Actinobacteria cluster exhibited much higher activities than ErmB and ErmC' from Firmicutes: 9 fold difference when ErmC' and ErmE were compared and 13 fold between ErmS and ErmB. Most of the difference was observed and presumed to be caused by N-terminal and C-terminal extra region from ErmS and ErmE, respectively because NT59TE in which N-terminal end 59 amino acids was truncated from wild type ErmS exhibited only 22.5% of wild type ErmS activity. Meanwhile, even NT59TE showed three and 2.2 times more activity when it was compared to ErmB and C, respectively, suggesting core region from antibiotic producers contains extra structure enabling higher activity. This is suggested to be possible through the extra region of 197RWS199 (from both ErmS and ErmE), 261GVGGSLY267 (from ErmS), and 261GVGGNIQ267 (from ErmE) and 291SVV293 (from ErmS) and 291GAV293 (from ErmE) by multiple sequence alignment.
The predominant Macrolides-Lincosamide-Streptogramin B (MLS$_B$) antibiotics resistance genes in staphylococci are erm(A) and erm(C). There is the phenomenon that the ratio of constitutively MLS$_B$ antibiotics resistance (cMLS) in erm(A) is much higher than in erm(C). Thus, we confirmed that the difference of the mutation ratio between erm(A) and erm(C) makes the phenomenon. We examined 8 staphylococci carrying inducibly expressed (iMLS) erm(A) or erm(C) genes. After overnight incubation in the presence of the non-inducer MLS$_B$ antibiotics, spontaneous mutants constitutively expressed MLS$_B$ resistance were selected. Against our expectation, the mutation ratio of erm(A) was lower than erm(C). Therefore, possibilities of other factors determining the ratio of cMLS phenotype might be concerned. All the mutants showed sequence alterations in translational attenuator and all the alterations seemed to give rise to change the second structure of mRNA to express constitutively. For erm(A), 4 different types of sequence deletions ranging from 72 bp to 122 bp and 3 different types of duplications ranging 24 bp to 93 bp were detected. Also, there were 9 different types of duplications ranging 15bp to 154bp in erm(C).
The purpose of this study was to investigate the prevalence and genetic mechanisms of erythromycin resistance in staphylococci. A total of 102 erythromycin resistant non-duplicate clinical isolates of staphylococci [78. coagulase negative stapylococci (CNS), 24 Staphylococcus aureus] were collected between October 2003 and August 2004 in Istanbul Faculty of Medicine in Turkey. The majority of the isolates were from blood and urine specimens. Antimicrobial susceptibilities were determined by the agar dilution procedure and the resistance phenotypes by the double disk induction test. A multiplex PCR was performed, using primers specific for erm(A), erm(B), erm(C), and msrA genes.. Among the 78 CNS isolates, 57.8% expressed the $MLS_{B}-constitutive$, 20.6% the $MLS_{B}-inducible$, and 21.6% the $MS_B$ phenotypes. By PCR, 78.2% of these isolates harbored the erm(C) gene, 8.9% erm(A), 6.4% erm(B), and 11.5% msrA genes. In S. aureus, the constitutive $MLS_B$ (58.3 %) was more common than the inducible phenotype (20.8%). erm(A) was detected in 50% and erm(C) in 62.5% of the isolates, while 37.5% contained both erm(A) and erm(C). erm(C)-associated macrolide resistance was the most prevalent in CNS, while ermC) and erm(A, C) was the most prevalent in S. aureus.
Mazloumi, Mohammad Javad;Akbari, Reza;Yousefi, Saber
Microbiology and Biotechnology Letters
/
v.49
no.3
/
pp.449-457
/
2021
The aim of the present study was to survey the frequency of inducible and constitutive phenotypes and inducible cross-resistant genes by regulating the methylation of 23S rRNA (ermA, ermB, and ermC) and macrolide efflux-related msrA gene in Staphylococcus aureus and S. epidermidis strains. A total of 172 bacterial isolates (identified based on standard tests), were examined in this study. Antibiotic susceptibility was determined by the disk diffusion method, and all isolates were evaluated with respect to inducible and constitutive phenotypes. The presence of ermA, ermB, ermC, and msrA genes was investigated by a PCR assay. The constitutive resistance phenotypes showed a higher distribution among the isolates. R phenotype was detected more among S. epidermidis isolates (46.25%). ermB, ermC, and msrA genes were detected more in methicillin-resistant S. aureus (MRSA) and methicillin-resistant S. epidermidis (MRSE) isolates that had R and HD phenotypes (>77% strains). The ermA gene had the lowest frequency among MRSA, MRSE, MSSA, and MSSE strains (<14% isolates). Distribution of inducible resistance genes in MRSA and MRSE strains, and possibly other species, leads to increased constitutive resistance to erythromycin, clindamycin, and other similar antibiotics. Therefore, it can be challenging to treat infections caused by these resistant strains.
To achieve more accurate and rapid detection of macrolide-lincosamide-streptogramin B resistance genes, erm(A), erm(B), and erm(C), we developed a TaqMan probe-based real-time PCR (Q-PCR) method and compared it with conventional PCR (C-PCR), which is the most widely using erm gene identification method. The detection limit of Q-PCR was 5 fg of genomic DNA or 5-8 CFU of bacterial cells of Staphylococcus aureus. The utilization of Q-PCR might shorten the time to erm detection from 3-4 h to about 50 min. These data indicated that Q-PCR assay appears to be not only highly sensitive and specific, but also the most rapid diagnostic method. Therefore, the appropriate application of the Q-PCR assay will permit rapid and accurate identification of erm genes from clinical and other samples.
Erm proteins, MLS (macrolide-lincosamide-streptogramin B) resistance factor proteins, show high degree of amino acid sequence homology and comprise of a group of structurally homologous N-methyltransferases. On the basis of the recently determined structures of ErmC` and ErmAM, ErmSF was divided into two domains, N-terminal end catalytic domain and C-terminal end substrate binding domain and attempted to overexpress catalytic domain in E. coli using various pET expression systems. Three DNA fragments were used to express the catalytic domain: DNA fragment 1 encoding Met 1 through Glu 186, DNA fragment 2 encoding Arg 60 to Glu 186 and DNA fragment 3 encoding Arg 60 through Arg 240. Among the pET expression vectors used, pET 19b successfully expressed the DNA fragment 3 and pET23b succeeded in expression of DNA fragment 1 and 2. But the overexpressed catalytic domains existed as inclusion body, a insoluble aggregate. To assist the soluble expression of ErmSF catalytic domains, Coexpression of chaperone GroESL or Thioredoxin and lowering the incubation temperature to $22^{\circ}C$ were attempted, as did in the soluble expression of the whole ErmSF protein. Both strategies did not seem to be helpful. Solubilization with guanidine-HCl and renaturation with gradual removal of denaturant and partial digestion of overexpressed whole ErmSF protein (expressed to the level of 126 mg/ι culture as a soluble protein) with proteinase K, nonspecific proteinase are under way.
ErmSF is one of the Erm family proteins which catalyze S-adenosyl-$_L$-methionine dependent modification of a specific adenine residue (A2058, E. coli numbering) in bacterial 23S rRNA, thereby conferring resistance to clinically important macrolide, lincosamide and streptogramin B ($MLS_B$) antibiotics. $^{222}FXPXPXVXS^{230}$ (ErmSF numbering) sequence appears to be a consensus sequence among the Erm family. This sequence was supposed to be involved in direct interaction with the target adenine from the structural studies of Erm protein ErmC'. But in DNA methyltarnsferase M. Taq I, this interaction have been identified biochemically and from the complex structure with substrate. Arginine 223 and 227 in this sequence are not conserved among Erm proteins, but because of the basic nature of residues, it was expected to interact with RNA substrates. Two amino acid residues were replaced with Ala by site-directed mutagenesis. Two mutant proteins still maintained its activity in vivo and resistant to the antibiotic erythromycin. Compared to the wild-type ErmSF, R223A and R227A proteins retained about 50% and 88% of activity in vitro, respectively. Even though those arginine residues are not essential in the catalytic step, with their positive charge they may play an important role for RNA binding.
Lee, Da Won;Jun, Lyu Jin;Kim, Seung Min;Jeong, Joon Bum
Korean Journal of Fisheries and Aquatic Sciences
/
v.51
no.4
/
pp.397-403
/
2018
We determined the resistance rates of pathogenic bacteria isolated from cultured olive flounder Paralichthys olivaceus to erythromycin (Em), antibiotic typically used in aquaculture and analyzed the genotypes of resistant bacteria using polymerase chain reaction (PCR). We isolated and utilized 160 isolates of Streptococcus parauberis, 1 of S. iniae, 66 of Edwardsiella tarda, 56 of Vibrio sp. and 23 of unidentified bacteria from presumed infected olive flounder from Jeju Island from March 2016 to October 2017. Of the 306 isolated strains, Em-resistant strains included 33 of S. parauberis, 39 of E. tarda and 2 of Vibrio sp. We conducted PCR to assess the resistance determination of Em-resistant strains. Five different types of Em-resistance genes were detected in the 74 Em-resistant strains: erm (A), erm (B), erm (C), mef (A) and mef (E); erm (A) and erm (B) were detected in 1 (3%) and 24 (72.7%) S. parauberis isolates, respectively. In E. tarda, erm (B) was detected in five isolates (12.8 %) and no Em-resistance genes were detected in the two Vibrio sp. isolates.
ErmSF is one of the ERM proteins which transfer the methyl group to A2058 in 23S rRNA to confer the resistance to MLS (macrolide-lincosamide-streptogramin B) antibiotics on microorganism. Unlike other ERM proteins, ErmSF contains long N-terminal end region (NTER), of which $25\%$ is composed of arginine that is known to interact with RNA well. Gradual deletion of NTER leaded us to the point where mutant protein lost much of activity in vivo. Overexpressed and purified mutant protein showed much reduced activity in vitro: $2\%$ activity relative to that of wild type protein. This fact suggests that this amino acid interact with RNA close to methylatable adenine to locate it at an active site properly.
Most problematic antibiotic resistance mechanism for MLS (macrolide-lincosamide-streptogramn B) antibiotics encountered in clinical practice is mono- or dimethylation of specific adenine residue at 2058 (E. coli coordinate) of 23S rRNA which is performed by Erm (erythromycin ribosome resistance) protein through which bacterial ribosomes reduce the affinity to the antibiotics and become resistant to them. ErmSF is one of the four gene products produced by Streptomyces fradiae to be resistant to its own antibiotic, tylosin. Unlike other Erm proteins, ErmSF harbors idiosyncratic long N-terminal end region (NTER) 25% of which is comprised of arginine well known to interact with RNA. Furthermore, NTER was found to be important because when it was truncated, most of the enzyme activity was lost. Based on these facts, capability of NTER peptide to inhibit the enzymatic activity of ErmSF was sought. For this, expression system for two different proteins to be expressed in one cell was developed. In this system, two plasmids, pET23b and pACYC184 have unique replication origins to be compatible with each other in a cell. And expression system harboring promoter, ribosome binding site and transcription termination signal is identical but disparate amount of protein could be expressed according to the copy number of each vector, 15 for pACYC and 40 for pET23b. Expression of NTER peptide in pET23b together with ErmSF in pACYC 184 in E. coli successfully gave more amounts of NTER than ErmSF but no inhibitory effects were observed suggesting that there should be dynamicity in interaction between ErmSF and rRNA rather than simple and fixed binding to each other in methylation of 23S rRNA by ErmSF.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.