• 제목/요약/키워드: Ergonomic simulation

검색결과 31건 처리시간 0.022초

3D 휴먼 시뮬레이션을 통한 세일링 요트 윈치 배치 설계 연구 (Research on Arrangement Design for Sailing Yacht Winch using 3D Human Simulation)

  • 송연희;김동준;장성록;이유정;민경철
    • 한국해양공학회지
    • /
    • 제31권6호
    • /
    • pp.419-424
    • /
    • 2017
  • Unlike other leisure boats, a sailing yacht is propelled by wind power using sails that are controlled by the crew. Therefore, the ergonomic design of the equipment that the crew has to operate for sailing might be very important. However, it is difficult to find design rules and regulations for the equipment arrangement of a sailing yacht based on ergonomics. In this study, the arrangement design for the height and side plate angle of a winch for a sailing yacht was examined from an ergonomic design point of view. In a simulation, a Korean male in his 20s was selected as a human model for a grinder. The physical load was analyzed when he was operating a winch using a 3D human simulation. The lower back load showed the highest value when using the grinder at $90^{\circ}$ and $180^{\circ}$. Based on the results for the lower back load when using the grinder with various winch heights, it is suggested that the winch height from the cockpit floor to the top of the winch should be more than 40% of the height of the human operator. In addition, according to the results for the lower back load with various horizontal distances from the body, it is suggested that the side plate angle should be less than $16^{\circ}$.

A Design Procedure for Safety Simulation System Using Virtual Reality

  • Ki, Jae-Seug
    • 대한안전경영과학회지
    • /
    • 제1권1호
    • /
    • pp.69-77
    • /
    • 1999
  • One of the objectives of any task design is to provide a safe and helpful workplace for the employees. The safety and health module may include means for confronting the design with safety and health regulations and standards as well as tools for obstacles and collisions detection (such as error models and simulators), Virtual Reality is a leading edge technology which has only very recently become available on platforms and at prices accessible to the majority of simulation engineers. The design of an automated manufacturing system is a complicated, multidisciplinary task that requires involvement of several specialists. In this paper, a design procedure that facilitates the safety and ergonomic considerations of an automated manufacturing system are described. The procedure consists of the following major steps. Data collection and analysis of the data, creation of a three-dimensional simulation model of the work environment, simulation for safety analysis and risk assessment, development of safety solutions, selection of the preferred solutions, implementation of the selected solutions, reporting, and training. When improving the safety of an existing system the three-dimensional simulation model helps the designer to perceive the work from operators point of view objectively and safely without the exposure to hazards of the actual system.

  • PDF

3차원 휴먼 시뮬레이션을 이용한 선박생산공정의 근골격계질환 감소방안 연구 (A Study of Musculoskeletal Disorders Reduction Scheme in Shipbuilding Process Using 3D Human Simulation)

  • 민경철;김동준
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.119-125
    • /
    • 2008
  • Musculoskeletal disorders(MSDs) are one of the major issues in shipbuilding industry. Main risk factors of MSDs include manual handling of heavy weight, awkward posture, repetitive tasks, prolonged static muscle contraction, and so on. in this study, Using the three-dimensional digital human modeling and simulation method we made up a worker and work posture on a virtual environment. To verify this simulation we compared both traditional ergonomic analysis on a real worker and digital program analysis on a digital human. And this paper shows that it is possible to reduce the rate of MSDs in the shipbuilding industry because it means we can change poor posture mid surroundings into better ones.

Interaction Metaphors for Modeling Virtual Hair using Haptic Interfaces

  • Bonanni, Ugo;Kmoch, Petr;Magnenat-Thalmann, Nadia
    • International Journal of CAD/CAM
    • /
    • 제9권1호
    • /
    • pp.93-102
    • /
    • 2010
  • Shaping realistic hairstyles for digital characters is a difficult, long and tedious task. The lack of appropriate interaction metaphors enabling efficient and simple, yet accurate hair modeling further aggravates the situation. This paper presents 3D interaction metaphors for modeling virtual hair using haptic interfaces. We discuss user tasks, ergonomic aspects, as well as haptics-based styling and fine-tuning tools on an experimental prototype. In order to achieve faster haptic rates with respect to the hair simulation and obtain a transparent rendering, we adapt our simulation models to comply with the specific requirements of haptic hairstyling actions and decouple the simulation of the hair strand dynamics from the haptic rendering while relying on the same physiochemical hair constants. Besides the direct use of the discussed interaction metaphors in the 3D modeling area, the presented results have further application potential in hair modeling facilities for the entertainment industry and the cosmetic sciences.

실시간 휴먼 시뮬레이션을 위한 깊이 카메라 기반의 자세 판별 및 모션 보간 (Depth Camera-Based Posture Discrimination and Motion Interpolation for Real-Time Human Simulation)

  • 이진원;한정호;양정삼
    • 한국CDE학회논문집
    • /
    • 제19권1호
    • /
    • pp.68-79
    • /
    • 2014
  • Human model simulation has been widely used in various industrial areas such as ergonomic design, product evaluation and characteristic analysis of work-related musculoskeletal disorders. However, the process of building digital human models and capturing their behaviors requires many costly and time-consuming fabrication iterations. To overcome the limitations of this expensive and time-consuming process, many studies have recently presented a markerless motion capture approach that reconstructs the time-varying skeletal motions from optical devices. However, the drawback of the markerless motion capture approach is that the phenomenon of occlusion of motion data occurs in real-time human simulation. In this study, we propose a systematic method of discriminating missing or inaccurate motion data due to motion occlusion and interpolating a sequence of motion frames captured by a markerless depth camera.

A Design Procedure for Safety Simulation System Using Virtual Reality

  • Jae-seug Ki
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 1999년도 추계학술대회
    • /
    • pp.381-389
    • /
    • 1999
  • One of the objectives of any task design is to provide a safe and helpful workplace for the employees. The safety and health module may include means for confronting the design with safety and health regulations and standards as well as tools for obstacles and collisions detection (such as error models and simulators). Virtual Reality is a leading edge technology which has only very recently become available on platforms and at prices accessible to the majority of simulation engineers. The design of an automated manufacturing system is a complicated, multidisciplinary task that requires involvement of several specialists. In this paper, a design procedure that facilitates the safety and ergonomic considerations of an automated manufacturing system are described. The procedure consists of the following major steps: Data collection and analysis of the data, creation of a three-dimensional simulation model of the work environment, simulation for safety analysis and risk assessment, development of safety solutions, selection of the preferred solutions, implementation of the selected solutions, reporting, and training When improving the safety of an existing system the three-dimensional simulation model helps the designer to perceive the work from operators point of view objectively and safely without the exposure to hazards of the actual system.

  • PDF

Development of a Rule-Based Inference Model for Human Sensibility Engineering System

  • Yang Sun-Mo;Ahn Beumjun;Seo Kwang-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.743-755
    • /
    • 2005
  • Human Sensibility Engineering System (HSES) has been applied to product development for customer's satisfaction based on ergonomic technology. The system is composed of three parts such as human sensibility analysis, inference mechanism, and presentation technologies. Inference mechanism translating human sensibility into design elements plays an important role in the HSES. In this paper, we propose a rule-based inference model for HSES. The rule-based inference model is composed of five rules and two inference approaches. Each of these rules reasons the design elements for selected human sensibility words with the decision variables from regression analysis in terms of forward inference. These results are evaluated by means of backward inference. By comparing the evaluation results, the inference model decides on product design elements which are closer to the customer's feeling and emotion. Finally, simulation results are tested statistically in order to ascertain the validity of the model.

디지털 휴먼 모델링 도구를 이용한 작업 개선에 관한 연구 (A Study for Improvement of Work using Digital Human Modeling)

  • 김동준;박주용;김현우;장성록
    • 한국안전학회지
    • /
    • 제23권2호
    • /
    • pp.51-56
    • /
    • 2008
  • In these days, work-related musculoskeletal disorders(WMSDs) is one of the issues in the shipbuilding industry. As the number of injured workers and demands for worker's compensation have rapidly increased, improvement of work conditions and environments to prevent WMSDs has been more demanded. To reduce WMSDs' hazards in the shipbuilding industry, simulation technique which showed it's ability of increasing the manufacturing productivity was applied, because simulation technique has the evaluation ability for a worker's danger level of production process by RULA(Rapid Upper Limb Assesment). In this research, worker's altitude had modeled and worker's action has simulated. After the caution level was evaluated, we pointed out clues which had high workload. To reduce work-load, we applied ergonomic principles for improving working conditions and environments. Improved working conditions and environments were simulated using human modelling and simulation and their workload were evaluated again.

Digital Human Simulation을 이용한 근골격계질환 예방에 관한 연구 -조선업을 대상으로- (A Study for Prevention of Musculoskeletal Disorders Using Digital Human Simulation in the Shipbuilding Industry)

  • 장성록
    • 한국안전학회지
    • /
    • 제22권3호
    • /
    • pp.81-87
    • /
    • 2007
  • In this study digital human models of ship construction tasks using modeling & simulation were constructed and human models' activities through human activity analysis were evaluated. Human Factors experts analyzed the actual workers' tasks using the same technique used in human activity analysis at the same time. The main objective of this study is to check a possibility of applying digital human modeling technique to ship construction tasks that are mostly non-standardized(not uniformed) whereas most applications of digital human modeling technique have been applied to standardized tasks. We evaluated postures of both real workers and digital humans by RULA. It turned out that the final scores of RULA evaluation on real workers are the same as the RULA scores for digital humans. However, there were differences of RULA detail scores between real workers and digital humans in the several processes related with the wrist twist and deviations. Those differences are considered to be resulted from the error in the on-site measuring worker's body dimension which could be reduced by accurate tools to correct data for body dimension and digital real drawings for facilities. The results showed possibility of application of digital human modeling and ergonomic analysis on informal work operations as well as formal operations in the shipbuilding industry.