• 제목/요약/키워드: Er-doped fiber amplifier

검색결과 13건 처리시간 0.028초

Wideband Hybrid Fiber Amplifier Using Er-Doped Fiber and Raman Medium

  • Seo, Hong-Seok;Ahn, Joon-Tae;Park, Bong-Je;Chung, Woon-Jin
    • ETRI Journal
    • /
    • 제29권6호
    • /
    • pp.779-784
    • /
    • 2007
  • In this paper, we report the experimental results of a hybrid wideband fiber amplifier. The amplifying medium is a concatenated hybrid fiber consisting of Er-doped fiber (EDF) and dispersion compensating fiber (DCF). The gain mechanisms are based on stimulated emission in the EDF and stimulated Raman scattering (SRS) in the DCF. Since we simultaneously use optical amplification by the two processes, the gain bandwidth is easily expanded over 105 nm by a two-tone pumping scheme. Using an experimental setup constructed with a hybrid structure of EDF-DCF-EDF, we analyzed the spectral behavior of amplified spontaneous emission for pumping powers. We achieved an optical gain of over 20 dB in the wavelength range from 1,500 to 1,600 nm under optimized pumping conditions to make the spectral gain shape flat.

  • PDF

Er이 도핑된 졸-겔 코팅막의 발광특성 (Near IR Luminescence Properties of Er-doped Sol-Gel Films)

  • Lim, Mi-Ae;Seok, Sang-Il;Kim, Ju-Hyeun;Ahn, Bok-Yeop;Kwon, Jeong-Oh
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.136-136
    • /
    • 2003
  • In fiber optic networks, system size and cost can be significantly reduced by development of optical components through planar optical waveguides. One important step to realize the compact optical devices is to develop planar optical amplifier to compensate the losses in splitter or other components. Planar amplifier provides optical gain in devices less than tens of centimeters long, as opposed to fiber amplifiers with lengths of typically tens of meters. To achieve the same amount of gain between the planar and fiber optical amplifier, much higher Er doping levels responsible for the gain than in the fiber amplifier are required due to the reduced path length. These doping must be done without the loss of homogeniety to minimize Er ion-ion interactions which reduce gain by co-operative upconversion. Sol-gel process has become a feasible method to allow the incorporation of Er ion concentrations higher than conventional glass melting methods. In this work, Er-doped $SiO_2$-A1$_2$ $O_3$ films were prepared by two different method via sol -Eel process. Tetraethylorthosilicate(TEOS)/aluminum secondary butoxide [Al (OC$_4$ $H_{9}$)$_3$], methacryloxypropylcnethoxysaane(MPTS)/aluminum secondary butofde [Al(OC$_4$ $H_{9}$)$_3$] systems were used as starting materials for hosting Er ions. Er-doped $SiO_2$-A1$_2$ $O_3$ films obtahed after heat-treating, coatings on Si substrate were characterized by X-ray din action, FT-IR, and N-IR fluorescence spectroscopy. The luminescence properties for two different processing procedure will be compared and discussed from peak intensity and life time.

  • PDF

Wideband Gain Flattened Hybrid Erbium-doped Fiber Amplifier/Fiber Raman Amplifier

  • Afkhami, Hossein;Mowla, Alireza;Granpayeh, Nosrat;Hormozi, Azadeh Rastegari
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.342-350
    • /
    • 2010
  • An optimal wideband gain flattened hybrid erbium-doped fiber amplifier/fiber Raman amplifier (EDFA/FRA) has been introduced. A new and effective optimization method called particle swarm optimization (PSO) is employed to find the optimized parameters of the EDFA/FRA. Numerous parameters which are the parameters of the erbium-doped fiber amplifier (EDFA) and the fiber Raman amplifier (FRA) define the gain spectrum of a hybrid EDFA/FRA. Here, we optimize the length, $Er^{3+}$ concentration, and pump power and wavelength of the EDFA and also pump powers and wavelengths of the FRA to obtain the flattest operating gain spectrum. Hybrid EDFA/FRA with 6-pumped- and 10-pumped-FRAs have been studied. Gain spectrum variations are 1.392 and 1.043 dB for the 6-pumped- and 10-pumped-FRAs, respectively, in the 108.5 km hybrid EDFA/FRAs, with 1 mW of input signal powers. Dense wavelength division multiplexing (DWDM) system with 60 signal channels in the wavelength range of 1529.2-1627.1 nm, i.e. the wide bandwidth of 98 nm, is studied. In this work, we have added FRA's pump wavelengths to the optimization parameters to obtain better results in comparison with the results presented in our previous works.

$1.48{\mu}m$ 레이저 다이오드로 여기된 $Er^{3+}$ 첨가 광섬유 광증폭기에 대한 이론적 분석 (Theoretical Analysis of a $1.48{\mu}m$ Diode Laser Pumped $Er^{3+}$ Doped Fiber Amplifier)

  • 김회종
    • 한국광학회지
    • /
    • 제4권1호
    • /
    • pp.101-107
    • /
    • 1993
  • 3준위 레이저 rate equation 및 overlap integral로부터 파장 1.48 ${\mu}m$에서 여기된 E$r^{3+}$ 첨가 광섬유 광증폭기를 위한 광섬유 매개 변수의 최적 조건을 계산하였다. 이 계산으로부터 Er3+ 첨가 광섬유 광섬유 광증폭기의 소신호 이득(small signal gain) 특성을 개구수 (N.A.), V값, 광섬유 길이, 차단 파장(cutoff wavelength) 등의 함수로 알아 보았으며 또한, 최대 소신호 이득을 갖기 위한 광섬유 매개 변수를 결정하였다.

  • PDF

Regenerative Er-doped Fiber Amplifier System for High-repetition-rate Optical Pulses

  • Liu, Yan;Wu, Kan;Li, Nanxi;Lan, Lanling;Yoo, Seongwoo;Wu, Xuan;Shum, Perry Ping;Zeng, Shuguang;Tan, Xinyu
    • Journal of the Optical Society of Korea
    • /
    • 제17권5호
    • /
    • pp.357-361
    • /
    • 2013
  • A regenerative Er-doped fiber amplifier system for a high-repetition-rate optical pulse train is investigated for the first time. A signal pulse train with a wavelength tuning range of 18 nm is produced by a passive mode-locked fiber laser based on a nonlinear polarization rotation technique. In order to realize the amplification, an optical delay-line is used to achieve time match between the pulses' interval and the period of pulse running through the regenerative amplifier. The 16 dB gain is obtained for an input pulse train with a launching power of -30.4 dBm, a center wavelength of 1563.4 nm and a repetition rate of 15.3 MHz. The output properties of signal pulses with different center wavelengths are also discussed. The pulse amplification is found to be different from the regenerative amplification system for CW signals.

1.54um 광섬유 광증폭기 Er-doped Zirconiumfluoride 유리제조 (Fabrication of zirconiumfluoride Glasses used for 1.54um Fiber Amplifier)

  • 조운조
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1989년도 제4회 파동 및 레이저 학술발표회 4th Conference on Waves and lasers 논문집 - 한국광학회
    • /
    • pp.140-142
    • /
    • 1989
  • 1.54um 파장에서 최대 형광을 나타내는 ZrF4-BaF2-LaF3-AlF3-NaF : ErF3 유리를 built-in-casting 법에 의해 제조하였다. Er+3 이온을 0.2몰부터 4몰까지 첨가하였으며, Er+3 이온의 4I13/2 준위의 lifetime 은 Er+3 이온 0.2몰부터 2몰까지 28msec로 최대값을 갖으며 4몰일때는 급격히 감소하였다.

  • PDF

$Pr^{3+}-and$ $Pr^{3+}/Er^{3+}$-Doped Selenide Glasses for Potential $1.6{\mu}m$ Optical Amplifier Materials

  • Choi, Yong-Gyu;Park, Bong-Je;Kim, Kyong-Hon;Heo, Jong
    • ETRI Journal
    • /
    • 제23권3호
    • /
    • pp.97-105
    • /
    • 2001
  • $1.6\;{\mu}m$ emission originated from $Pr^{3+}:\;(^3F_3,\;^3F_4)\;{\longrightarrow}\;^3H_4$ transition in $Pr^{3+}-\;and\;Pr^{3+}/Er^{3+}$-doped selenide glasses was investigated under an optical pump of a conventional 1480 nm laser diode. The measured peak wavelength and fullwidth at half-maximum of the fluorescent emission are ~1650nm and 120nm, respectively. A moderate lifetime of the thermally coupled upper manifolds of ${\sim}212{\pm}10{\mu}s$ together with a high stimulated emission cross-section of ${\sim}(3{\pm}1){\times}10^{-20}\;cm^2$ promises to be useful for $1.6{\mu}m$ band fiber-optic amplifiers that can be pumped with an existing high-power 1480 nm laser diode. Codoping $Er^{3+}$ enhances the emission intensity by way of a nonradiative $Er^{3+}:\;^4I_{13/2}\;{\longrightarrow}\;Pr^{3+}:\;(^3F_3,\;^3F_4)$ energy transfer. The Dexter model based on the spectral overlap between donor emission and acceptor absorption describes well the energy transfer from $Er^{3+}$ to $Pr^{3+}$ in these glasses. Also discussed in this paper are major transmission loss mechanisms of a selenide glass optical fiber.

  • PDF

$CaO-Al_2O_3$계 유리에 함유된 $Er^{3+}$ 이온의 $^4I_{13/2}longrightarrow^4I_{15/2}$ 복사 천이 특성 ($^4I_{13/2}longrightarrow^4I_{15/2}$ Radiative Transitions of $Er^{3+}$ in $CaO-Al_2O_3$ Glasses)

  • 원종원;박용완
    • 한국세라믹학회지
    • /
    • 제31권8호
    • /
    • pp.861-868
    • /
    • 1994
  • CaO-Al2O3 glass is a good candidate as optical fiber amplifier and laser. In this study, optical properties for 4I13/2longrightarrow4I15/2 transition of Er3+ ions doped in CaO-Al2O3 glasses were investigated. Optical absorptions, radiative transition probabilities and lifetimes for 4I13/2 level were evaluated by using Judd-Ofelt theory. Also, induced- emmision cross-sections of 4I13/2longrightarrow4I15/2 transition were calculated. Radiative transition probability and lifetime of 4I13/2 level were 144.6s-1, 690$mutextrm{s}$ respectively for 60CaO.40Al2O3 glass(FS0) and 152.6s-1, 660 $mutextrm{s}$ for 54 CaO.36Al2O3.10SiO2 glass (FS10). Each induced-emission cross sections for FS0 and FS10 was 0.749$\times$10-20 $\textrm{cm}^2$, 0.892$\times$10-20 $\textrm{cm}^2$. Obtained values were comparable with those of ZBLA glass studied as optical fiber amplifier and laser material.

  • PDF

Improvement of $^{4}I_{11/2}{\to}^{4}I_{13/2}$ Transition Rate and Thermal Stabilities in $Er^{3+}-Doped\;TeO_2-B_2O_3\;(GeO_2)-ZnO-K_2O$ Glasses

  • Cho, Doo-Hee;Choi, Yong-Gyu;Kim, Kyong-Hon
    • ETRI Journal
    • /
    • 제23권4호
    • /
    • pp.151-157
    • /
    • 2001
  • Spectroscopic and thermal analysis indicates that tellurite glasses doped with $B_2O_3$ and $GeO_2$ are promising candidate host materials for wide-band erbium doped fiber amplifier (EDFA) with a high 980 nm pump efficiency. In this study, we measured the thermal stabilities and the emission cross-sections for $Er^{3+}:^{4}I_{13/2}\;{\to}\;^{4}I_{15/2}$ transition in this tellurite glass system. We also determined the Judd-Ofelt parameters and calculated the radiative transition rates and the multiphonon relaxation rates in this glass system. The 15 mol% substitution of $B_2O_3$ for $TeO_2$ in the $Er^{3+}-doped\;75TeO_2-20ZnO-5K_2O$ glass raised the multiphonon relaxation rate for $^4I_{11/2}\;{\to}\;^4I_{13/2}$ transition from 4960 $s^{-1}$ to 24700 $s^{-1}$, but shortened the lifetime of the $^4I_{13/2}$ level by 14 % and reduced the emission cross-section for the $^4I_{13/2}\;{\to}\;^4I_{15/2}$ transition by 11%. The 15 mol% $GeO_2$ substitution in the same glass system also reduced the emission cross-section but increased the lifetime by 7%. However, the multiphonon relaxation rate for $^4I_{11/2}{\to}^4I_{13/2}$ transition was raised merely by 1000 $s^{-1}$. Therefore, a mixed substitution of $B_2O_3$ and $GeO_2$ for $TeO_2$ was concluded to be suitable for the 980 nm pump efficiency and the fluorescence efficiency of $^4I_{13/2}{\to}^4I_{15/2}$ transition in $Er^{3+}-doped$ tellurite glasses.

  • PDF