• Title/Summary/Keyword: Equivalent stress and strain

Search Result 256, Processing Time 0.021 seconds

Three-Dimensional Rigid Plastic Fintie Element Analysis of Extruding-bulging Process of Tee Tubes

  • Shan, Debin;Kim, Hyun-Soo;Kim, Young-Suk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.35-39
    • /
    • 2000
  • Three-dimensional rigid plastic FEM is adopted to analyze the extruding-bulging process of tee tubes. Equivalent strain-rate stress distributions and the deformation characteristic in extruding-bulging process of tee tubes are revealed which provide scientific and reliable basis for correctly designing technologcial scheme and rationally selecting parameters. meanwhile some approaches for three-dimensional rigid plastic FEM are also discussed in this paper

  • PDF

A Study on Roundness Improvement of Heat-treated Large Diameter Aluminum Tube-turning with Collet Type Jig (열처리된 대직경 알루미늄 튜브선삭에서 콜릿지그를 통한 진원도 향상에 관한 연구)

  • Kim, Pyeong-Ho;Lim, Hak-Jin;Lee, Jung-Min;Lee, Jong-Hwan;Kim, Jung-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.824-829
    • /
    • 2012
  • The purpose of this study is to evaluate the proposed jig for turning process of large-scale aluminum tube of D500mm through Finite Element Analysis (FEA). Also, a machining evaluation is conducted with general heat-treated and cryogenic heat-treated tubes. Dimensions of the specimens are determined to be suitable for collet appearance. The characteristics of equivalent stress and strain according to the expansion of the collet are evaluated by FEA. The aluminum tubes which are heat-treated by T4/T6 condition and cryogenic condition are machined by using a large-scale lathe machine and the roundness of machined tube is evaluated by using a 3D measuring machine. Through the results of this study, effects of each heat treatment and residual stress on the roundness are established.

Development of Local Failure Criteria for Well Thinning Defect by Simulated Specimen Tests (모사시편 시험을 통한 감육결함 국부손상기준 개발)

  • Kim, Jin-Weon;Kim, Do-Hyung;Park, Chi-Yong;Lee, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.304-312
    • /
    • 2007
  • The objective of this study is to develop a local failure criterion for a wall thinning defect of piping components. For this purpose, a series of tensile tests was performed using several types of simulated specimens with different stress states, including smooth round bar, notched round bar (five different notch radii), and grooved plate (three different groove radii). In addition, finite element (FE) simulations were performed on the simulated specimen tests and the results were compared with the test results. From the comparisons, the equivalent stress and strain corresponding to maximum load and final failure of notched specimens were proposed as failure criteria under tensile load. The criteria were verified by employing them to the estimation of failure of grooved plate specimens that simulate the wall thinning defect. It showed that the proposed criteria accurately estimate the maximum load and final failure of grooved plate specimen tests.

Improvement in Thermomechanical Reliability of Power Conversion Modules Using SiC Power Semiconductors: A Comparison of SiC and Si via FEM Simulation

  • Kim, Cheolgyu;Oh, Chulmin;Choi, Yunhwa;Jang, Kyung-Oun;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Driven by the recent energy saving trend, conventional silicon based power conversion modules are being replaced by modules using silicon carbide. Previous papers have focused mainly on the electrical advantages of silicon carbide semiconductors that can be used to design switching devices with much lower losses than conventional silicon based devices. However, no systematic study of their thermomechanical reliability in power conversion modules using finite element method (FEM) simulation has been presented. In this paper, silicon and silicon carbide based power devices with three-phase switching were designed and compared from the viewpoint of thermomechanical reliability. The switching loss of power conversion module was measured by the switching loss evaluation system and measured switching loss data was used for the thermal FEM simulation. Temperature and stress/strain distributions were analyzed. Finally, a thermal fatigue simulation was conducted to analyze the creep phenomenon of the joining materials. It was shown that at the working frequency of 20 kHz, the maximum temperature and stress of the power conversion module with SiC chips were reduced by 56% and 47%, respectively, compared with Si chips. In addition, the creep equivalent strain of joining material in SiC chip was reduced by 53% after thermal cycle, compared with the joining material in Si chip.

A Research on Hydrostatic Extrusion of Copper-Clad Aluminum Bar (구리-알루미늄 클래드 봉의 정수압 압출 특성 연구)

  • 김창훈;김시영
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.27-33
    • /
    • 1999
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminum rod through metallurgical joining. In this study, the rigid plastic finite element program, HICKORY, is used to analyze the steady state extrusion process of the bimetal rod. Simulations are performed for copper-clad aluminum rod with several extrusion ratio to give the distributions of effective strain rate, equivalent stress and hardness. Experiments are also carried out for aluminum-inserted copper rod at room temperature. It is found out that finite element predictions are generally in good agreement with the experimental observations. The detail comparison of the extrusion loads by the finite element method with those by experiments are given.

  • PDF

Effects of Specimen Length on Flexural Compressive Strength of Concrete (부재의 길이가 콘크리트의 휨압축강도에 미치는 영향)

  • 김진근;이성태;이태규
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.63-71
    • /
    • 1999
  • In evaluating the ultimate strength of a section for a reinforced concrete flexural member, the effect of member length is not usually considered, even though the strength tends to decrease with increase of member length. In this paper the influence of specimen length on flexural compressive strength of concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to axial compression and bending moment were tested using four different length-to-depth ratios (from 1,2,3 and 4) of specimens with compressive strength of 590 kgf/$\textrm{cm}^2$. Results indicate that for the region of h/c <3.0 the reduction in flexural compressive strength with increase of length-to-depth ratios was apparent. A model equation was depth of an equivalent rectangular stress block was larger than that by ACI. It was also founded that the effect of specimen length on ultimate strain was negligible. Finally more general model equation is also suggested.

Hydrostatic Extrusion of Copper-Clad Aluminum Rod (구리 피복 알루미늄 봉의 정수압 압출에 의한 성형)

  • 박훈재;나경환;조남선;이용신
    • Transactions of Materials Processing
    • /
    • v.4 no.2
    • /
    • pp.123-130
    • /
    • 1995
  • The present study is concerned with the hydrostatic extrusion process for the copper-clad aluminum rod through metallurgical joining. The rigid viscoplastic finite element analyses are performed for the steady state extrusion process of the bimetal rod. An algorithm for finding the interface profile of the bimetal rod by tracking a particle path in Eulerian domain is presented. The distributions of the effective strain rate, equivalent stress and hardness are examined for the several extrusion ratios. Experiments are also carried out for the copper-clad aluminum rod at room temperature. It is found out that the finite element predictions are generally in good agreement with the experimental observations. The detail comparisons of the extrusion loads predicted by the element method with those by experiments are given.

  • PDF

A study of dynamic peoperties in cyclic simple shear test (동적단순전단 시험기를 이용한 매립지반 거동특성에 관한 연구)

  • Kim, Sung-Jin;Ryu, Jeong-Ho;Park, Yo-Hwan;Kim, Jin-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1422-1430
    • /
    • 2008
  • Cyclic simple shear test apparatus was used to investigate the dynamic response of liquefiable soils as reclamation material. The specimen were reclamation using simple air-pluviation method. The confining stress was applied the range of 100 kpa to 200 kpa. The resulted strain was in the range of $10^{-3}$ ~ 5 %. Based on these test results modulus reduction curve, damping curve and cyclic strength curve were developed. The developed curves were compared to those already available in literature. The obtained curves can be applied to FEM or equivalent linear analysis such as SHAKE for ground response analysis.

  • PDF

Stress Block of High Strength Polymer Concrete Flexural Members (고강도 폴리머 콘크리트 휨부재의 응력블럭)

  • 김관호;김남길;연규석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.638-644
    • /
    • 2002
  • The stress-strain relationship of polymer concrete flexural member was evaluated using C-shaped polyester concrete specimen, the compressive strength of which is 1400 kgf/$\textrm{cm}^2$. Eccentric compression test was performed to estimate the parameters, ${\alpha}$, ${\beta}$1, ${\gamma}$ for equivalent rectangular stress block. The ultimate moment strength ware obtained from the bending test on reinforced polymer concrete beams which were prepared with S different tensile steel ratios with a shear span ratio of 4.0. These values were compared with theoretical ultimate moment strengths, which were obtained using the parameters ${\alpha}$=0.61 and ${\beta}$1=0.73 from stress-stain curves of C-shaped specimens. The results showed that, when tensile steel ratio was over 0.50 $\rho$b, the experimentally obtained moment strengths were well matched with theoretically calculated values. In order to develop accurate criteria for polymer concrete flexural members, however, many other expermental studies for parameter determination are necessary using C-shaped specimens which have various compressive strengths and different sizes.

Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior

  • Song Ki-Won;Kim Yong-Seok;Chang Gap-Shik
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.129-138
    • /
    • 2006
  • Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mix ability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.