• Title/Summary/Keyword: Equivalent ratio

Search Result 1,259, Processing Time 0.024 seconds

Multiple characteristic response damage analysis of large-span space structures based on equivalent damping ratio

  • Wei, Jun;Yang, Qingshun;Zhou, Lexiang;Chen, Fei
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Due to the large volume and generally as a public building, the damage of large-span space structures under various non-conventional loads will cause greater economic losses, casualties, and social impacts, etc. Therefore, it is particularly important to evaluate the seismic performance of large-span space structures. This paper taked a multipurpose sports center as an example and considered its synergistic deformation based on the method of equivalent damping ratio. Furthermore, The ABAQUS software was used to analyze the time-history and energy response of the multipurpose sports center under the action of rare earthquakes, and proposed a quantitative damage index to assess the overall damage of the structure. Finally, the research results indicated that the maximum inter-story drift ratio of the multipurpose sports center under the action of rare earthquakes was less than its limit value. The frame beams presented different degrees of damage, but the key members were basically in an elastic state. The bearing capacity did not reach the limit value, which satisfied the intended seismic performance target. This study taked an actual case as an example and proposed a relevant damage evaluation system, which provided some reference for the analysis of the seismic performance of large-span space structures.

A Study on Clogging and Hydraulic Properties for Drain Filters of Tunnels (터널배수재 필터의 폐색 및 수리적 특성에 관한 연구)

  • 문준석;한봉수;장연수;이두화
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.111-115
    • /
    • 2001
  • Durability of tunnel drains is important, because the accumulation of groundwater around the tunnel due to clogging of filter or reduction of discharge capacity of drain causes reduction of the life time of tunnel linings. In this paper, clogging and discharge capacity of drain and filter of tunnels are evaluated using a gradient ratio test and filter design criteria. The results of the gradient ratio test showed that gradient ratio(GR) is high when fine content is high in the soil samples and equivalent opening size(EOS) of filter materials is small. Measured GR was less than allowable critical gradinet ratio : 3.0, which is the clogging criteria of U.S. Army Corps of Engineers.

  • PDF

Determination of Damping Modification Factor in RC Structures Due to Energy Absorption Efficiency (에너지 흡수효율에 의한 철근콘크리트 구조물의 감쇠비 수정계수 결정)

  • 김장훈;좌동훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.161-166
    • /
    • 2002
  • The modification factor( k-factor) of equivalent damping ratio utilized in the current state-of-the-practice to account for the imperfection of reinforced concrete structures in hysteresis loop is investigated. From this, it is found that the current modification factor does not include the effect of cyclic loading, one of the important characteristic properties of earthquake loading. This could be taken into account by considering the energy absorption efficiency based on the cummulative plastic deformation. From the study, it is suggested that the current approach for the modification factor for the equivalent damping ratio should be reformed.

  • PDF

High concentration ratio approximation of linear effective properties of materials with cubic inclusions

  • Mejak, George
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.61-77
    • /
    • 2018
  • This paper establish a high concentration ratio approximation of linear elastic properties of materials with periodic microstructure with cubic inclusions. The approximation is derived using first few terms of power series expansion of the solution of the equivalent eigenstrain problem with a homogeneous eigenstrain approximation. Viability of the approximation at high concentration ratios is proved by comparison with a numerical solution of the homogenization problem. To this end some theoretical result of symmetry properties of the homogenization problem are given. Using these results efficient numerical computation on a reduced computational domain is presented.

Seismic responses of structure isolated by FPB subject to pounding between the sliding interfaces considering soil-structure interaction

  • Yingna Li;Jingcai Zhang
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.463-475
    • /
    • 2024
  • The study aims to investigate the pounding that occurs between the isolator's ring and slider of isolated structures resulting from excessive seismic excitation, while considering soil-structure interaction. The dynamic responses and poundings of structures subjected a series seismic records were comparatively analyzed for three different soil types and fixed-base structures. A series of parametric studies were conducted to thoroughly discuss the effects of the impact displacement ratio, the FPB friction coefficient ratio, and the radius ratio on the structural dynamic response when considering impact and SSI. It was found that the pounding is extremely brief, with an exceptionally large pounding force generated by impact, resulting in significant acceleration pulse. The acceleration and inter-story shear force of the structure experiencing pounding were greater than those without considering pounding. Sudden changes in the inter-story shear force between the first and second floors of the structure were also observed. The dynamic response of structures in soft ground was significantly lower than that of structures in other ground conditions under the same conditions, regardless of the earthquake wave exciting the structure. When the structure is influenced by pulse-type earthquake records, its dynamic response exhibits a trend of first intensifying and then weakening as the equivalent radius ratio and friction coefficient ratio increase. However, it increases with an increase in the pounding displacement ratio, equivalent radius ratio, friction coefficient ratio, and displacement ratio when the structures are subjected to non-pulse-type seismic record.

A study on case analysis for loading capacity standard establishment of bi-directional pile load test (BD PLT) (양방향말뚝재하시험의 재하용량 기준 설정을 위한 사례분석 연구)

  • Choi, Yong-Kyu;Seo, Jeong-Hae;Kim, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.377-384
    • /
    • 2008
  • In the bi-directional pile load test (BD PLT) for pile load test of Mega foundation, loading capacity specification were not specified exactly. Therefore there are so many confusions and variations of maximum 2 times in loading capacity are come out. In this study, specifications of bi-directional pile load test (BD PLT) were considered. Based on cases of the bi-directional pile load test performed in domestic areas, maximum equivalent test load, test load increasing ratio and sufficiency ratio of design load were analyzed. It can be known that the loading capacity specification of bi-directional pile load test must be defined as 1-directional test load that is established as more than 2 times of design load.

  • PDF

Optimal shape of LCVA for vibration control of structures subjected to along wind excitation

  • Park, Ji-Hun;Min, Kyung-Won
    • Smart Structures and Systems
    • /
    • v.10 no.6
    • /
    • pp.573-591
    • /
    • 2012
  • In this study, a procedure to design an optimal LCVA that maximizes the equivalent damping ratio added to the primary structure subjected to along-wind excitation is proposed. That design procedure does not only consider the natural frequency and damping ratio of the LCVA, but also the proportion of the U-shaped liquid, which is closely related to the participation ratio of the liquid mass in inertial force. In addition, constraints to ensure the U-shape of the liquid are considered in the design process, so that suboptimal solutions that violate the optimal tuning law partly are adopted as a candidate of the optimal LCVA. The proposed design procedure of the LCVA is applied to the control of the 76-story benchmark building, and the optimal proportions of the liquid shape under various design conditions are compared.

Nonlinear Characteristic of a Tuned Liquid Column Damper under Various Excitation Amplitudes (가진입력의 크기에 따른 동조액체기둥감쇠기의 비선형 특성)

  • Lee, Sung-Kyung;Lee, Hye-Ri;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.842-849
    • /
    • 2009
  • The objective of this study is to investigate design parameters of a tuned liquid column damper(TLCD), which is affected by various excitation amplitudes, through shaking table test. Design parameters of a TLCD are examined based on the equivalent tuned mass damper(TMD) model of a TLCD, in which the nonlinear damping of a TLCD is transposed to equivalent viscous damping. Shaking table test is carried out for a TLCD specimen subjected to harmonic waves with various amplitudes. Transfer functions are ratios of liquid displacement of TLCD and control force produced by a TLCD, respectively, with respect to the acceleration excited by a shaking table. They are derived based on the equivalent TMD model of a TLCD. Then, the variation of design parameters according to the excitation amplitude is examined by comparing analytical transfer functions with experimental ones. Finally, the dissipation energy due to the damping of a TLCD, which is experimentally observed from the shaking table test, is examined according to the excitation amplitude. Comparisons between test results and analytical transfer functions showed that natural frequencies of TLCD and the ratio of the liquid mass in a horizontal column to the total liquid mass does not depend on the excitation amplitude, while the damping ratio of a TLCD increases with larger excitation amplitudes.

  • PDF

Modelling of tension-stiffening in bending RC elements based on equivalent stiffness of the rebar

  • Torres, Lluis;Barris, Cristina;Kaklauskas, Gintaris;Gribniak, Viktor
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.997-1016
    • /
    • 2015
  • The contribution of tensioned concrete between cracks (tension-stiffening) cannot be ignored when analysing deformation of reinforced concrete elements. The tension-stiffening effect is crucial when it comes to adequately estimating the load-deformation response of steel reinforced concrete and the more recently appeared fibre reinforced polymer (FRP) reinforced concrete. This paper presents a unified methodology for numerical modelling of the tension-stiffening effect in steel as well as FRP reinforced flexural members using the concept of equivalent deformation modulus and the smeared crack approach to obtain a modified stress-strain relation of the reinforcement. A closed-form solution for the equivalent secant modulus of deformation of the tensioned reinforcement is proposed for rectangular sections taking the Eurocode 2 curvature prediction technique as the reference. Using equations based on general principles of structural mechanics, the main influencing parameters are obtained. It is found that the ratio between the equivalent stiffness and the initial stiffness basically depends on the product of the modular ratio and reinforcement ratio ($n{\rho}$), the effective-to-total depth ratio (d/h), and the level of loading. The proposed methodology is adequate for numerical modelling of tension-stiffening for different FRP and steel reinforcement, under both service and ultimate conditions. Comparison of the predicted and experimental data obtained by the authors indicates that the proposed methodology is capable to adequately model the tension-stiffening effect in beams reinforced with FRP or steel bars within wide range of loading.

Effect of the Combination of Point Loads on the Design Flexural Capacity for Fiber Reinforced Concrete Floor Slab (집중하중 조합에 의한 섬유 보강 콘크리트 바닥슬래브의 설계 휨 내력)

  • Lee, Jong-Han;Cho, Baik-Soon;Kim, Jung-Sik;Cho, Bum-Gu;Ki, Han-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • In this study, the flexural capacity of fiber reinforced concrete floor slabs were evaluated using main design loads, racking and moving loads. Based on design standards and guidelines, the magnitude and loaded area of each load were determined, and its relationship was assessed. For the application of a single load, flexural capacity should be evaluated in the edge of a floor slab. In addition, the slab with thickness and concrete strength, greater than 180mm and 35MPa, respectively, sufficiently satisfied flexural capacity with a minimum of equivalent flexural strength ratio. The combination of racking loads required the largest equivalent flexural strength ratio to satisfy the flexural capacity of the floor slab. The combination of racking and moving loads showed equivalent flexural strength ratio smaller than the case of combination of racking loads, but larger than the application of single racking or moving loads. The results of this study indicated that the flexure of fiber reinforced concrete floor slabs should be designed using the combination of design loads.