• Title/Summary/Keyword: Equivalent grid impedance

Search Result 16, Processing Time 0.024 seconds

Microwave Absorbing Properties of Grid-type Magnetic Composites (격자형 자성 복합재의 전파흡수 특성)

  • Park, Myung-Joon;Kim, Sung-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.389-393
    • /
    • 2012
  • Improvement in microwave absorbance has been investigated by insertion of a periodic air cavity in rubber composites filled with magnetic powders. A mixture of $Co_2Z$ hexagonal ferrite and Fe powders were used as the absorbent fillers in silicone rubber matrix. The complex permeability and complex permittivity of the magnetic composites were measured by reflection/transmission technique. In the grid-type magnetic absorbers, the equivalent permeability (${\mu}_{eq}$) and permittivity (${\varepsilon}_{eq}$) are calculated as a function of air volume rate (K) on the basis of effective medium theory. Reduction in the material parameters (especially, dielectric permittivity and magnetic loss) has been estimated with the increase of K. Plotting the ${\mu}_{eq}$ and ${\varepsilon}_{eq}$ on the solution map of wave-impedance matching, wide bandwidth microwave absorbance has been predicted in the magnetic composites with an optimum value of K.

Anti-islanding Detection of Photovoltaic Inverter Based on Negative Sequence Voltage Injection to Grid (역상분 전압 주입을 이용한 태양광 인버터의 단독 운전 검출)

  • Kim, Byeong-Heon;Park, Yong-Soon;Sul, Seung-Ki;Kim, Woo-Chull;Lee, Hyun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.546-552
    • /
    • 2012
  • This paper presents an active anti-islanding detection method using negative sequence voltage injection to the grid through a three-phase photovoltaic inverters. Because islanding operation mode can cause a variety of problems, the islanding detection of grid-connected photovoltaic inverter is the mandatory feature. The islanding mode is detected by measuring the magnitude of negative sequence impedance calculated by the negative sequence voltage and current at the point of common coupling. Simulation and experimental test are performed to verify the effectiveness of the proposed method which can detect the islanding mode in the specified time. The test has been done in accordance with the condition on IEEE Std 929-2000.

Stability Control of Energy Storage Voltage Source Inverters in Isolated Power Systems

  • Hu, Jian;Fu, Lijun
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1844-1854
    • /
    • 2018
  • Isolated power systems (IPS) are often characterized by a weak grid due to small power grids. The grid side voltage is no longer equivalent to an ideal voltage source of an infinitely big power grid. The conversion control of new energy sources, parameter perturbations as well as the load itself can easily cause the system voltage to oscillate or to become unstable. To solve this problem, increasing the energy-storage power sources is usually used to improve the reliability of a system. In order to provide support for the voltage, the energy-storage power source inverter needs an method to control the voltage source. Therefore, this paper has proposed the active damping control of a voltage source inverter (VSI) based on virtual compensation. By simplifying the VSI double closed-loop control, two feedback compensation channels have been constructed to reduce the VSI output impedance without changing the characteristics of the voltage gain of a system. This improvement allows systems to operate stably in a larger range. A frequency-domain analysis, and simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method.

Electromagnetic Susceptibility Analysis of I/O Buffers Using the Bulk Current Injection Method

  • Kwak, SangKeun;Nah, Wansoo;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.114-126
    • /
    • 2013
  • In this paper, we present a set of methodologies to model the electromagnetic susceptibility (EMS) testing of I/O buffers for mobile system memory based on the bulk current injection (BCI) method. An efficient equivalent circuit model is developed for the current injection probe, line impedance stabilization network (LISN), printed circuit board (PCB), and package. The simulation results show good correlation with the measurements and thus, the work presented here will enable electromagnetic susceptibility analysis at the integrated circuit (IC) design stage.

Research on the Inter-harmonics Equivalent Impedance of Series Hybrid Active Power Filter

  • Jian-gong, Zhang;Jian-ben, Liu;Shao-jun, Dai;Qiao-fu, Chen;Jun-jia, He
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2062-2069
    • /
    • 2015
  • In the series hybrid active power filter (SHAPF) with magnetic flux compensation (MFC), the system current oscillate in the experimental results when adding the same phase harmonic current command in current control block. This condition endangers the security of the SHAPF. Taking the digit period average arithmetic as example, this paper explains the inter-harmonics current oscillation in the experiment. The conclusion is that the SHAPF is unstable to the inter-harmonics current in theory. Limited by the capacity of the inverter, the system current and the inverter output current do not increase to infinite. At last, some methods are proposed to solve this problem. From the practical viewpoint, the voltage feed-forward control is easy to achieve. It can suppress the current oscillation problems, and also improve the filtering effect. The feasibility of the methods is validated by both the emulation and experiment results.

A low cost miniature PZT amplifier for wireless active structural health monitoring

  • Olmi, Claudio;Song, Gangbing;Shieh, Leang-San;Mo, Yi-Lung
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.365-378
    • /
    • 2011
  • Piezo-based active structural health monitoring (SHM) requires amplifiers specifically designed for capacitive loads. Moreover, with the increase in number of applications of wireless SHM systems, energy efficiency and cost reduction for this type of amplifiers is becoming a requirement. General lab grade amplifiers are big and costly, and not built for outdoor environments. Although some piezoceramic power amplifiers are available in the market, none of them are specifically targeting the wireless constraints and low power requirements. In this paper, a piezoceramic transducer amplifier for wireless active SHM systems has been designed. Power requirements are met by two digital On/Off switches that set the amplifier in a standby state when not in use. It provides a stable ${\pm}180$ Volts output with a bandwidth of 7k Hz using a single 12 V battery. Additionally, both voltage and current outputs are provided for feedback control, impedance check, or actuator damage verification. Vibration control tests of an aluminum beam were conducted in the University of Houston lab, while wireless active SHM tests of a wind turbine blade were performed in the Harbin Institute of Technology wind tunnel. The results showed that the developed amplifier provided equivalent results to commercial solutions in suppressing structural vibrations, and that it allows researchers to perform active wireless SHM on moving objects with no power wires from the grid.