• 제목/요약/키워드: Equivalent damping

검색결과 389건 처리시간 0.027초

광학적 망점확대의 상당산란면적 모델에 관한 연구 (Equivalent Scattering Area Model of Optical Dot Gain)

  • 강상훈
    • 한국인쇄학회지
    • /
    • 제12권1호
    • /
    • pp.43-55
    • /
    • 1994
  • To investigate relations between Grain-shape of plate and Dot-Gain in the lithography, Printing plates were made by Mechanical Grain, Brush Grain and Electrolytic Grain method.Fine multi-grain by electrolytic method of them resulted in less Dot-grain on the paper, more damping water on the none image part of printing plate.

  • PDF

Improvement of dynamic responses of a pedestrian bridge by utilizing decorative wind chimes

  • Liu, Wei-ya;Tang, Hai-jun;Yang, Xiaoyue;Xie, Jiming
    • Wind and Structures
    • /
    • 제30권3호
    • /
    • pp.317-323
    • /
    • 2020
  • A novel approach is presented to improve dynamic responses of a pedestrian bridge by utilizing decorative wind chimes. Through wind tunnel tests, it was verified that wind chimes can provide stabilization effects against flutter instability, especially at positive or negative wind angles of attack. At zero degrees of angle of attack, the wind chimes can change the flutter pattern from rapid divergence to gradual divergence. The decorative wind chimes can also provide damping effects to suppress the lateral sway motion of the bridge caused by pedestrian footfalls and wind forces. For this purpose, the swing frequency of the wind chimes should be about the same as the structural frequency, which can be achieved by adjusting the swing length of the wind chimes. The mass and the swing damping level are other two important and mutually interactive parameters in addition to the swing length. In general, 3% to 5% swing damping is necessary to achieve favorite results. In the study case, the equivalent damping level of the entire system can be increased from originally assumed 1% up to 5% by using optimized wind chimes.

정현파 출력 필터를 가지는 3상 PWM 인버터 제어 기법 (A Novel Control Algorithm of a Three-phase PWM Inverter with LC Filter)

  • 김광섭;현동석
    • 전력전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.239-246
    • /
    • 2015
  • A novel control method of a three-phase PWM inverter with LC filter is proposed. The transfer function of LC filter is the same as that of second-order low pass filter(LPF), which has a zero damping ratio. A simple method of implementing second-order LPF with damping ratio is to add a resistor in an LC circuit. However, in a real power system, adopting damping resistors is impractical because it results in losses proportional to the square of the current flowing through the resistors. Instead of inserting resistors, the proposed control strategy utilizes the measured capacitor voltages to control the oscillation of LC circuit. The overall transfer function of the proposed method is the same as a second-order LPF, and its damping ratio is controllable via control variables. The current controller can have overshoots caused by LC filter. Improved current controller is implemented by an equivalent second-order of LC filter. A 7.5 kVA PWM converter and a PWM inverter with a 5.5 kW induction motor are set up to verify the proposed control algorithm. Test waveforms are also presented to verify the proposed LC filter control algorithm.

동특성 변화를 이용한 감쇠 구조물의 손상예측 (Prediction of the Damage in the Structure with Damping Using the Modified Dynamic Characteristics)

  • 이정윤
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1144-1151
    • /
    • 2012
  • A damage in structure alters its dynamic characteristics. The change is characterized by changes in the modal parameter, i.e., modal frequencies, modal damping value and mode shape associated with each modal frequency. Changes also occur in some of the structural parameters; namely, the mass, damping, stiffness matrices of the structure. In this paper, evaluation of changes in stiffness matrix of a structure is presented as a method not only for identifying the presence of the damage but also locating the damage. It is shown that changed stiffness matrix can be accurately estimated a sensitivity coefficient matrix derived from modifying mode shapes, First, with 4 story shear structure models, the effect of presence of damage in a structure on its stiffness matrix is studied. By using these analytical model, the effectiveness of using change of stiffness matrix in detecting and locating damages is demonstrated. To validate the predicted changing stiffness and its location, the obtained results are compared to the reanalysis result which shows good agreement.

Effects of soil-structure interaction and variability of soil properties on seismic performance of reinforced concrete structures

  • Mekki, Mohammed;Hemsas, Miloud;Zoutat, Meriem;Elachachi, Sidi M.
    • Earthquakes and Structures
    • /
    • 제22권3호
    • /
    • pp.219-230
    • /
    • 2022
  • Knowing that the variability of soil properties is an important source of uncertainty in geotechnical analyses, we will study in this paper the effect of this variability on the seismic response of a structure within the framework of Soil Structure Interaction (SSI). We use the proposed and developed model (N2-ISS, Mekki et al., 2014). This approach is based on an extension of the N2 method by determining the capacity curve of the fixed base system oscillating mainly in the first mode, then modified to obtain the capacity curve of the system on a flexible basis using the concept of the equivalent nonlinear oscillator. The properties of the soil that we are interested in this paper will be the shear wave velocity and the soil damping. These parameters will be modeled at first, as independent random fields, then, the two parameters will be correlated. The results obtained showed the importance of the use of random field in the study of SSI systems. The variability of soil damping and shear wave velocity introduces significant uncertainty not only in the evaluation of the damping of the soil-structure system but also in the estimation of the displacement of the structure and the base-shear force.

전산플랫폼을 이용한 초고층구조물의 감쇠장치 최적화 설계 (Optimization Design of Damping Devices for a Super-Tall Building Using Computational Platform)

  • 정보라;이상현;정란;최현철
    • 한국전산구조공학회논문집
    • /
    • 제28권2호
    • /
    • pp.145-152
    • /
    • 2015
  • 본 연구에서는 파라매트릭 모델링 기법을 통해 다양한 대안을 고려할 수 있도록 개발된 StrAuto(이하 전산플랫폼)을 이용하여 감쇠장치에 따른 감쇠비 증가 효과와 풍하중 저감효과를 평가하였다. 비정형 초고층구조물의 수많은 구조시스템 대안 선정을 지원하는 전산플랫폼은 설계자 또는 엔지니어에게 초기 대안을 결정하는데 있어 유용한 도구가 된다. 감쇠장치의 용량 및 추가 요구감쇠비의 크기를 산정하는 과정에서 중요한 원 구조물의 감쇠비에 대한 추정은 풍하중에 대한 실계측 자료를 기반으로 수행된 국내외 관련 연구의 결과를 사용하였다. 감쇠장치는 층간 설치형 수동형 감쇠장치와 질량형 능동형 감쇠장치 두 가지 유형을 고려하였다. 감쇠장치에 의해 추가되는 감쇠비는 FEMA에서 제안한 식을 이용하여 등가 정적 해석을 수행하여 산정하였다. 전산 플랫폼 내부에 감쇠장치의 용량을 최적화하는 알고리즘을 내장함으로써 최적의 감쇠장치 설계안을 자동적으로 도출할 수 있다. 감쇠장치 설치에 따른 물량저감 효과는 풍하중 저감계수로 평가될 수 있으며, 455m 높이의 초고층구조물을 대상으로 제안한 방법의 유효성을 검증하였다. 제안한 방법을 사용하여 비선형 시간이력 해석을 통해 얻어진 지붕층 변위와 층별 전단력을 근사적으로 추정할 수 있음을 확인하였다.

Vibration behavior of large span composite steel bar truss-reinforced concrete floor due to human activity

  • Cao, Liang;Li, Jiang;Zheng, Xing;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.391-404
    • /
    • 2020
  • Human-induced vibration could present a serious serviceability problem for large-span and/or lightweight floors using the high-strength material. This paper presents the results of heel-drop, jumping, and walking tests on a large-span composite steel rebar truss-reinforced concrete (CSBTRC) floor. The effects of human activities on the floor vibration behavior were investigated considering the parameters of peak acceleration, root-mean-square acceleration, maximum transient vibration value (MTVV), fundamental frequency, and damping ratio. The measured field test data were validated with the finite element and theoretical analysis results. A comprehensive comparison between the test results and current design codes was carried out. Based on the classical plate theory, a rational and simplified formula for determining the fundamental frequency for the CSBTRC floor is derived. Secondly, appropriate coefficients (βrp) correlating the MTVV with peak acceleration are suggested for heel-drop, jumping, and walking excitations. Lastly, the linear oscillator model (LOM) is adopted to establish the governing equations for the human-structure interaction (HSI). The dynamic characteristics of the LOM (sprung mass, equivalent stiffness, and equivalent damping ratio) are determined by comparing the theoretical and experimental acceleration responses. The HSI effect will increase the acceleration response.

수평 교번하중에 대한 초가삼간 목조 프레임의 이력특성 평가 (Hysteretic Characteristics of Wooden Frames of Three-Bay-Straw-Roof House under Lateral Cyclic Load)

  • 서정문;최인길;전영선;이종림;신재철
    • 한국지진공학회논문집
    • /
    • 제1권3호
    • /
    • pp.21-27
    • /
    • 1997
  • 본 논문에서는 사개맞춤으로 제작된 우리 나라 전통 초가삼간 목조 프레임의 수평방향 교번하중에 대한 이력특성을 실험을 통하여 규명하였다. 실험에는 1.:1 모델을 제작하여 사용하였다. 사개맞춤 목조 프레임의 이력특성은 못이나 사재를 사용한 목조 프레임의 이력특성과는 매우 상이하다. 프레임의 등가 점성감쇠비는 평주 프레임의 경우 약 27%, 고주 프레임의 경우 약 13%이다. 개량형 Double Target 모델의 이용하여 비선형 이력특성을 모사하였다.

  • PDF

An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers

  • Lu, Zheng;Wang, Dianchao;Masri, Sami F.;Lu, Xilin
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.93-115
    • /
    • 2016
  • A particle tuned mass damper (PTMD) system is the combination of a traditional tuned mass damper (TMD) and a particle damper (PD). This paper presents the results of an experimental and analytical study of the damping performance of a PTMD attached to the top of a benchmark model under wind load excitation. The length ratio of the test model is 1:200. The vibration reduction laws of the system were explored by changing some system parameters (including the particle material, total auxiliary mass ratio, the mass ratio between container and particles, the suspending length, and wind velocity). An appropriate analytical solution based on the concept of an equivalent single-unit impact damper is presented. Comparison between the experimental and analytical results shows that, with the proper use of the equivalent method, reasonably accurate estimates of the dynamic response of a primary system under wind load excitation can be obtained. The experimental and simulation results show the robustness of the new damper and indicate that the damping performance can be improved by controlling the particle density, increasing the amount of particles, and aggravating the impact of particles etc.