• Title/Summary/Keyword: Equivalent Orthotropic Model

Search Result 41, Processing Time 0.022 seconds

Method for Determining Orthotropic Elastic Constants of Equivalent Shell Elements for the Boiler Membrane Wall of Coal-Fired Power Plants (석탄화력발전소 보일러의 멤브레인벽을 위한 등가 쉘요소의 직교이방성 탄성상수 결정 방법)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.77-85
    • /
    • 2020
  • In this study, we proposed a method to replace the solid finite element model of the boiler membrane wall for coal-fired power plants using an equivalent shell model. The application of a bending load to the membrane wall creates greater displacement at both ends of the central portion when compared with the middle when an isotropic elastic constant is used in the shell model. This is inconsistent with the results of the solid model where the central portion is uniformly deformed. Here, we presented a method to determine the orthotropic elastic constants of the shell model in terms of bending stiffness and vibration characteristics to solve this problem. Our analysis of the orthotropic shell model showed that the error ratio was 0.9% for the maximum displacement due to the bending load, 0.3% for the first natural frequency, and 2.5% for the second natural frequency when compared with the solid model. In conclusion, a complicated boiler membrane wall composed of a large number of pipes and fins can be replaced with a simple shell model that shows equivalent bending stiffness and vibration characteristics using our proposed method.

Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials

  • Fakoor, Mahdi;Rafiee, Roham;Zare, Shahab
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode $I(K)_{IC}{\mid})$ cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode $I(K_{IC}{\mid}^{ortho}_{max})$ is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined.

Prediction Model of the Sound Transmission Loss of Honeycomb Panels for Railway Vehicles (철도차량용 허니콤재의 차음성능 예측모델)

  • Kim, Seock-Hyun;Paek, In-Su;Lee, Hyun-Woo;Kim, Jeong-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.5
    • /
    • pp.465-470
    • /
    • 2008
  • Sound transmission characteristics are investigated on the honeycomb panels used for railway vehicles. Equivalent orthotropic plate model and equivalent mass law are applied to predict the sound transmission loss (STL) of the honeycomb panels. The predicted values of the STL are compared with the measured values. The reliability and the limitation of the prediction models are investigated. Coincidence effect and local resonance effect on STL are considered. The result of the study shows that the equivalent orthotropic plate model can be used as a good prediction model, if the local resonance frequency is properly applied. finally, ways to improve the severe STL drop by local resonance are proposed and the effect on the sound insulation performance is analysed.

Sound Insulation Performance of the Panel Structures in High Speed Train: Transmission Loss of the Corrugated and Extruded Panels (고속철도 차음구조의 차음성능: 주름 및 압출재의 투과손실)

  • Kim, Seock-Hyun;Paek, In-Su;Kim, Jeong-Tae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.82-89
    • /
    • 2007
  • Sound transmission characteristics are investigated on the corrugated steel and aluminium extruded panels used for railway vehicles. Sewell-Sharp-Cremer(SSC) model, equivalent orthotropic plate model and equivalent mass law are applied to predict the sound transmission loss. The predicted values of the sound transmission loss are compared with the measured values. The reliability and the limitation of the prediction models are investigated. For the corrugated panels and honeycomb panels, the coincidence and local resonance severely deteriorate the sound insulation performance around the corresponding frequency bands. The result of the study shows that the equivalent orthotropic plate model and the SSC model can be used as good prediction models, if the coincidence frequency or local resonance frequency is correctly applied.

  • PDF

Characteristics of Sound Insulation in Sandwich Plates with Orthotropic Skin Plate (이방성판을 사용한 샌드위치판의 차음특성)

  • Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Jae-Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.853-856
    • /
    • 2004
  • This study presents a prediction method for sound insulation of sandwich plate which consists of orthotropic plates as skin and mineral wool as core. Prediction by classic theory, which considers orthotropic effects, requires considerably complex and cumbersome process and moreover many assumption. However, experimental results of the sandwich plate with orthotropic plates as skin show that the orthotropic effects are disappeared or fade out. Hence, predictions by using sandwich model are conducted by a simple modelling that substitutes an orthotropic plate into an equivalent flat plate. Comparative results show that sandwich model gives a good agreements with theoretical prediction.

  • PDF

Vibration Analysis of Longitudinally Corrugated Cylindrical Shells (길이방향으로 주름진 원통셸의 진동 해석)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.851-856
    • /
    • 2016
  • In this paper, the free vibration characteristics of longitudinally corrugated cylindrical shells is investigated by the theoretical analysis. The equivalent homogenization model is adapted to investigate the overall mechanical behavior of these corrugated shells. The corrugated element can be represented as an orthotropic material. Both the effective extensional and flexural stiffness of this equivalent orthotropic material are considered in the analysis. To demonstrate the validity of the proposed theoretical approach, the theoretical results are compared with those from 3D finite element analysis using ANSYS commercial code. Some numerical results are presented to check the effect of the geometric properties.

Sound Transmission Loss of Aluminium Extruded panels for Railway vehicles (철도차량용 알루미늄 압출재의 투과손실)

  • 김석현;박정철;김종년
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.662-668
    • /
    • 2000
  • Sound transmission characteristics are investigated on the aluminium extruded panels used for railway vehicles. An equivalent orthotropic plate model and mass law are applied to predict the sound transmission loss. An extruded panel specimen used in the floor of railway vehicles is manufactured and is tested to measure sound transmission loss by two reverberant chamber method. Predicted transmission loss I compared with measured values and the effect of local resonance on the transmission characteristics is identified. The results are applied to design the extruded panel having better sound insulation performance.

  • PDF

A Concrete Model for Analysis of Concrete Structure with Confinement (구속응력을 받는 콘크리트 구조물 해석을 위한 콘크리트 구성모델)

  • Kwon, Min-Ho;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.433-442
    • /
    • 2003
  • This paper presents a hypoplastic model for three-dimensional analysis of concrete structures under monotonic, cyclic, proportional and non-proportional loading. The constitutive model is based on the concept of equivalent uniaxial strains that allows the assumed orthotropic model to be described via three equivalent uniaxial stress-strain curves. The characteristics of these curves are obtained from the ultimate strength surface in the principal stress space based on the Willam-Warnke curve. A cap model is added to consider loading along or near the hydrostatic axis. The equivalent uniaxial curve is based on the Popovics and Saenz models. The post-peak behavior is adjusted to account for the effects of confinement and to describe the change in response from brittle to ductile as the lateral confinement increases. Correlation studies with available experimental tests are presented to demonstrate the model performance. Tests with monotonic loading on specimens under constant lateral confinement are considered first, followed by biaxial and triaxial tests with cyclic loads. The triaxial test example considers non-proportional loading.

Equivalent Plate Model and Acoustic Power Radiation of the Corrugated Panel Structures for High Speed Train (고속전철용 주름판넬구조의 등가평판모델 및 방사소음)

  • 장준호;이상윤;홍성철;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.3
    • /
    • pp.26-35
    • /
    • 1999
  • The acoustic power reduction method can be used to design a quiet structure. To calculate the acoustic power radiated from a vibrating structure, the dynamic responses have to be determined. It is not easy to analyse the structure composed of the corrugated panels because of the structural complexity and the long analysing time. To make up for these defects, the equivalent orthotropic panel is presented. Also the acoustic power prediction method of the vibrating structures is proposed. As examples, the equivalent material properties of the corrugated plates are obtained and the acoustic powers of the floor structure are calculated at several frequency regions for the Korean High Speed Train.

  • PDF

Vibration Analysis of Laminated Composite Corrugated Plates (적층 복합재료 주름판의 진동해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.347-352
    • /
    • 2016
  • This work presents the free vibration characteristics of laminated composite corrugated rectangular plates using the analytical method. Because it is very difficult to determine its mechanical behavior of 3-dimensional corrugated structures analytically, the equivalent homogenization model is adapted to investigate the overall mechanical behavior of corrugated structures. The corrugated element can be homogenized as an orthotropic material. Both the effective extensional and flexural stiffness of this homogenized equivalent orthotropic material are considered in the analysis. The present analytical results are validated by those obtained from 3D finite element analysis based on shell elements. The natural frequencies and global vibration mode shapes obtained from present analytical and finite element analysis are presented. Some numerical results are presented to check the effect of the geometric properties.