• Title/Summary/Keyword: Equivalent Model

Search Result 3,094, Processing Time 0.029 seconds

3D-based equivalent model of SMART control rod drive mechanism using dynamic condensation method

  • Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae-Seon;Chang, Seongmin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1109-1114
    • /
    • 2022
  • The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the feasibility and applicability of a 3D-based equivalent model using dynamic condensation method for seismic analysis of a SMART control rod drive mechanism. The equivalent model is utilized for complicated seismic analysis during the design of the SMART. While the 1D-based beam-mass equivalent model is widely used in the nuclear industry for its calculation efficiency, the 3D-based equivalent model is suggested for the seismic analysis of SMART to enhance the analysis accuracy of the 1D-based equivalent model while maintaining its analysis efficiency. To verify the suggested model, acceleration response spectra from seismic analysis based on the 3D-based equivalent model are compared to those from the 1D-based beam-mass equivalent model and experiments. The accuracy and efficiency of the dynamic condensation method are investigated by comparison to analysis results based on the conventional modeling methodology used for seismic analysis.

Equivalent Model Dynamic Analysis of Main Wing Assembly for Optionally Piloted Personal Air Vehicle (자율비행 개인항공기용 주익 조립체 등가모델 동특성 해석)

  • Kim, Hyun-gi;Kim, Sung Jun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.72-79
    • /
    • 2021
  • In this study, as part of the development of an autonomous flying personal aircraft, an equivalent model of the main wing assembly of an Optionally Piloted Personal Air Vehicle (OPPAV) was developed. Reliability of the developed equivalent model was verified by eigenvalue analysis. The main wing assembly consisted of a main wing, an inboard pod, and an outboard pod. First, for developing an equivalent model of each component, components to produce the equivalent model were divided into several sections. Nodes were then created on the axis of the equivalent model at both ends of each section. In addition, static analysis with unit force and unit moment was performed to calculate the deformation or the amount of rotation at the node to be used in the equivalent model. Equivalent axial, bending, and torsional stiffness of each section were calculated by applying the beam theory. Once the equivalent stiffness of each section was calculated, information of a mass and moment of inertia for each section was entered by creating a lumped mass in the center of each section. An equivalent model was developed using beam element. Finally, the reliability of the developed equivalent model was verified by comparison with results of mode analysis of the fine model.

Equivalent Circuit Modeling of Rosen-type Multilayer Piezoelectric Transformer (Rosen형 적층 압전변압기의 등가회로 모델링)

  • Shin, Hoon-Beom;Lee, Yong-Kuk;Yu, Young-Han;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1099-1105
    • /
    • 2006
  • In this paper, the equivalent circuit model of a Rosen-type multilayer piezoelectric transformer(MPT) has been proposed based on the Mason's equivalent circuit model and the principle of single layer piezoelectric plate. From the piezoelectric direct and converse effects, the symbolic expressions between the electric inputs and outputs of the MPT have been derived from the equivalent circuit model. A simplified equivalent circuit model of the MPT whose driving part has a single input form has been proposed. The symbolic expressions of the driving part have been derived from the simplified equivalent circuit model and the model was compared with the multi-input equivalent circuit model through the simulation. In the comparisons between the simulation results and the experimental data, output voltage is 630 Vp-p in case of 11-layered MPT and 670 Vp-p for 13-layered MPT over the experiment range. As the load resistance increases, output voltage increases and saturates over $300k{\Omega}$ and the resonant frequency changes from 102 kHz to 103 kHz. The simulation and the experimental results agree well over different load resistances and frequencies.

A Reduced Equivalent 5 conductors Modeling of the Catenary System (전차선로 시스템의 5 도체 등가 축약 모델링)

  • 이한민;오광해;이장무;창상훈;장길수;권세혁
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.12
    • /
    • pp.684-690
    • /
    • 2003
  • This paper estimates line constants of equivalent five-conductors model using the reduced equivalent method. Actually, the catenary system is considered by the equivalent five-conductors model in the electrical aspect. Therefore, we should compose the catenary system of the equivalent five-conductors model, then the line constants of this equivalent five-conductors model are calculated. This paper shows the reducing process about the real system of the field by using the proposed theory. Also the line constants of reduced system are provided in this paper.

Estimation of Nonlinear Response for Moment Resisting Reinforced Concrete Frames Using Equivalent SDOF System (등가 1 자유도계에 의한 철근콘크리트 건물의 비선형 동적해석의 검토)

  • 전대한;노필성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.205-212
    • /
    • 2003
  • To evaluate the seismic performance of multistory building structures use an equivalent SDOF model. This paper presents a method of converting a MDOF system into an equivalent SDOF model. The principal objective of this investigation is to evaluate appropriateness of converting method through perform nonlinear time history analysis of a multistory building structures and an equivalent SDOF model. The hysteresis rules to be used an equivalent SDOF model is obtained from the pushover analysis. The conclusion of this study is following; A method of converting a MDOF system into an equivalent SDOF model through the nonlinear time history response analysis is valid. The representative lateral displacement of a moment resisting reinforced concrete frames is close to the height of the first modal participation vector $_1$$\beta$$_1$u}=1. It can be found that the hysteresis rule of an equivalent SDOF model have influence on the time history response. Therefore, it is necessary for selecting hysteresis rules to consider hysteresis characteristics of a moment resisting reinforced concrete frames.

  • PDF

Equivalent Structural Modeling of Wind Turbine Rotor Blade (풍력발전기 로터 블레이드의 등가 구조모델 수립)

  • Park, Young-Geun;Hwang, Jai-Hyuk;Kim, Seok-Woo;Jang, Moon-Seok;Bae, Jae-Sung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2006
  • The wind turbine rotor blade is faced with various aeroelastic problem as rotor blades become bigger and lighter by the use the composite material. The aeroelastic analysis of a wind turbine rotor blade requires its aerodynamic model and structural model. For effective aeroelastic analysis, it is required the simple and effective structural model of the blade. In the present study, we introduce the effective equivalent structural modeling of the blade for aeroelastic analysis. The equivalent beam model of the composite blade based on its 3D finite element model is established. The free vibration analysis shows that the equivalent beam model of the blade is equivalent to its 3D finite element model.

  • PDF

Determination of Equivalent Roughness for Estimating Flow Resistance in Stabled Gravel-Bed River: II. Review of Model Applicability

  • Park, Sang-Woo;Lee, Sin-Jae;Jang, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1211-1220
    • /
    • 2008
  • In this study, we estimated, the equivalent roughness using an estimation model, which considered grain distribution on the bed and the protrusion height of the grains. We also reviewed the appropriateness of the estimated equivalent roughness at the Goksung and Gurey station in the Seomjin River. To review the appropriateness of this model, we presented the water level-discharge relation curve applying the equivalent roughness to the flow model and compared and reviewed it to observed data. Also, we compared and reviewed the observed data by estimating the Manning coefficient n, the Chezy coefficient C, and the Darcy-Weisbach friction coefficient f by the equivalent roughness. The calculation results of the RMSE showed within 5% error range in comparison with observed value. Therefore the estimated equivalent roughness values by the model could be proved appropriate.

Beat Control Using an Equivalent Ring Model (등가 종 모델을 이용한 맥놀이 조절법)

  • Kim, Seockhyun;Lee, Joonghyeok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.516-519
    • /
    • 2012
  • This study proposes a method of an equivalent bell model in order to tune the beat period of a Korean bell. In a Korean bell having a slight asymmetry, each circumferential mode splits into a mode pair which has a slight difference in frequency, and the interaction of the mode pair makes a beat in vibration and sound. An equivalent bell model which consists of an axi-symmetric bell and an equivalent point mass, has the same mode property as in a real bell. The equivalent bell model is constructed by the finite element analysis based upon the theory of a revolutionary shell Using the equivalent bell model, the beat period is predicted when the bell thickness is locally decreased to improve the beat property. The predicted result is verified by experiment on a test bell. The proposed method is useful to save the time required for tuning the beat period of a large bell.

  • PDF

Dynamic equivalent model of a SMART control rod drive mechanism for a seismic analysis

  • Ahn, Kwanghyun;Lee, Jae-Seon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1834-1846
    • /
    • 2020
  • The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the development of a dynamic equivalent model of the SMART control rod drive mechanism that can be efficiently utilized for complicated analysis during the design of the SMART. A semi-empirical approach is used to develop the equivalent model; that is, the equivalent model is defined analytically and verified empirically. Two types of tests, dynamic characteristics tests and seismic loading tests, are conducted for the development and verification of the dynamic equivalent model, respectively. Acceleration response spectra from the seismic analysis based on the developed equivalent model show good agreement with those from the seismic loading tests.

A Phase-Domain Equivalent Representation for Electromagnetic Transients Studies (전력계통 과도현상 해석을 위한 상영역에서의 등가축약 기법)

  • Jung, B.T.;Kim, S.H.;Heo, S.I.;Ahn, B.S.;Hong, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.731-733
    • /
    • 1996
  • In this paper, a new time-domain reduction method for unbalanced 3 phase power systems will be represented. The impulse response of the system is used to identify a discrete-time equivalent filter model. The model is formulated directly in the phase domain. Each phase has a self-mode equivalent model and two mutual-mode equivalent models. The equivalent model is determined by the transfer function identification technique based on the Prony analysis. The model is implemented in EMTDC and tested with an unbalanced 3 phase network. The result of test showed that the equivalent model is accurate.

  • PDF