• Title/Summary/Keyword: Equivalent Mechanical Properties

Search Result 317, Processing Time 0.026 seconds

Physical, Mechanical Properties and Freezing and Thawing Resistance of Non-Cement Porous Vegetation Concrete Using Non-Sintering Inorganic Binder (비소성 무기결합재를 사용한 무시멘트 다공성 식생콘크리트의 물리·역학적 특성 및 동결융해저항성 평가)

  • Kim, Hwang Hee;Kim, Chun Soo;Jeon, Ji Hong;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.37-44
    • /
    • 2014
  • The physical, mechanical and freezing and thawing properties of non cement porous vegetation concrete using non-sintering inorganic binder have been evaluated in this study. Four types of porous vegetation concrete according to the binder type is evaluated. The pH value, void ratio, compressive strength, repeated freezing and thawing properties were tested. The test results indicate that the physical, mechanical and repeated freezing and thawing properties of porous vegetation concrete using the non-sintering inorganic binder is increased or equivalent compared to the porous vegetation concrete using the blast furnace slag + cement and hwang-toh + cement binders. Also, Vegetation monitoring test results indicate the porous vegetation concrete using the non-sintering inorganic binder have increasing effects of vegetation growth.

Random Vibration Analysis of Portable Power Supply Container for Radar With U.S. Military Standards (미 군사규격을 적용한 레이더 전력공급용 이동식 컨테이너의 Random Vibration 해석)

  • Do, Jae-Seok;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.71-77
    • /
    • 2022
  • In times of war or emergencies, weapon systems, such as radars, must receive stable power. This can be achieved using improved onboard portable power systems made of steel containers. However, a breakdown can occur in the event of random vibration during transportation via a vehicle or train. Electrical-power shortages or restrictions pose a significant threat to security. In this study, Composite Wheeled Vehicle(CWV) data and rail cargo data with Acceleration Spectral Density(ASD), specified in MIL-STD-810H METHOD 514.8, were interpreted as input data of the three-axis random vibration method using ANSYS 19.2. Modal analysis was performed up to 500 Hz, and deformations in modes 1 to 117 were calculated to utilize all ASD data. The maximum equivalent stress in the three-axis direction was obtained using a random vibration analysis. Similarly, the margin of safety was calculated using the derived equivalent stress and material properties. Overall, the analysis verified that the portable container designed for the power supply system satisfied the required vibration demands.

Vibration Analysis of Trapezoidally Corrugated Plates (사다리꼴 주름판의 진동해석)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.928-934
    • /
    • 2013
  • In this paper, the vibration characteristics of the trapezoidally corrugated plate are investigated by the analytical method. The corrugated plate is widely used as the structural elements because of its high stiffness and light weight. Because the corrugated plate is flexible in the corrugation direction and stiff in the transverse direction, it is treated as an equivalent orthotropic plate to analyze the corrugated plate simply. This equivalent plate must include both extensional and flexural effect to obtain the precise solution. The effective extensional and flexural stiffness of the equivalent plate are derived to consider these effects in the analysis. To demonstrate the validity of the proposed approach, the comparison is made with the previously published results and ANSYS solutions. Some numerical results are presented to check the effect of the geometric properties.

A Study on the Microscopically Characteristics of Properties of the Magnetic Recording Disk (자기저장 디스크 표면의 물성치에 관한 미소특성 연구)

  • Hwang, Pyung;Kim, Do-Hyung;Kim, Jang-Kyo
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.52-58
    • /
    • 1999
  • Nano-indentation and nano-scratch tests were peformed to assess the mechanical and tribological properties of the coating on a commercially available thin-film magnetic recording disk. Surface topography and roughness of the disk was studied using atomic force microscopy. The hardness and elastic modulus data show a peak at an indentation depth equivalent to the thickness of carbon overcoat, indicating strong influence of the coatin $g_strate interaction and the coating surface roughness on the measurements. The variations of surface roughness data were analysed statistically based on the normal probability distribution theories and Weibull cumulative probability theories.es.

Durability of high performance sandcretes (HPS) in aggressive environment

  • Benamara, Dalila;Tebbal, Nadia;Rahmouni, Zine El Abidine
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.199-206
    • /
    • 2019
  • High performance sandcretes (HPS) are new concretes characterized by particles having a diameter less than 5 mm, as well as very high mechanical strength and durability. This work consists in finding solutions to make sandcretes with good physico-mechanical and durability properties for this new generation of micro-concrete. However, upgrading ordinary sandcrete into high performance sandcrete (HPS) requires a thorough study of formulation parameters (equivalent water/binder ratio, type of cement and its dosage, kind and amount of super plasticizer, and gravel/sand ratio). This research study concerns the formulation, characterization and durability, in a sulphate environment, of a high performance sandcrete (HPS), made from local materials. The obtained results show that the rheological properties of fresh concrete and mechanical strength differ with the mineralogy, density and grain size distribution of sands and silica fume used.

Identification of Motion Platform Using the Signal Compression Method with Pre-Processor and Its Application to Siding Mode Control

  • Park, Min-Kyu;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1379-1394
    • /
    • 2002
  • In case of a single input single output (SISO) system with a nonlinear term, a signal compression method is useful to identify a system because the equivalent impulse response of linear part from the system can be extracted by the method. However even though the signal compression method is useful to estimate uncertain parameters of the system, the method cannot be directly applied to a unique system with hysteresis characteristics because it cannot estimate all of the two different dynamic properties according to its motion direction. This paper proposes a signal compression method with a pre-processor to identify a unique system with two different dynamics according to its motion direction. The pre-processor plays a role of separating expansion and retraction properties from the system with hysteresis characteristics. For evaluating performance of the proposed approach, a simulation to estimate the assumed unknown parameters for an arbitrary known model is carried out. A motion platform with several single-rod cylinders is a representative unique system with two different dynamics, because each single-rod cylinder has expansion and retraction dynamic properties according to its motion direction. The nominal constant parameters of the motion platform are experimentally identified by using the proposed method. As its application, the identified parameters are applied to a design of a sliding mode controller for the simulator.

Mechanical properties and damage constitutive model of self-compacting rubberized concrete

  • Ke, Xiaojun;Xiang, Wannian;Ye, Chunying
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.257-267
    • /
    • 2022
  • Two different types of rubber aggregates (40 mesh rubber powder and 1-4 mm rubber particles respectively) were devised to substitute fine aggregates at 10%, 15%, 20% and 30% by volume in self-compacting concrete to investigate their basic mechanical properties. The results show that with the increase of rubber content, the reduction of compressive strength, splitting tensile strength and static modulus of elasticity gradually increase, and energy dissipation performance gradually increase. The rubber addition significantly reduces brittleness and decelerates damaged process. Whilst, the effect of rubber particles is greater when they are finer. Considering the mechanical properties, the optimal rubber content is 10%. It is recommended that the rubber volume content in rubberized concrete (RC) should not be higher than 20%. In addition, a constitutive model under uniaxial compression was proposed basing on the strain equivalent principle of Lemaitre and the damage theory, which was in good agreement with the test curves.

Vibration Analysis of Longitudinally Corrugated Cylindrical Shells (길이방향으로 주름진 원통셸의 진동 해석)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.851-856
    • /
    • 2016
  • In this paper, the free vibration characteristics of longitudinally corrugated cylindrical shells is investigated by the theoretical analysis. The equivalent homogenization model is adapted to investigate the overall mechanical behavior of these corrugated shells. The corrugated element can be represented as an orthotropic material. Both the effective extensional and flexural stiffness of this equivalent orthotropic material are considered in the analysis. To demonstrate the validity of the proposed theoretical approach, the theoretical results are compared with those from 3D finite element analysis using ANSYS commercial code. Some numerical results are presented to check the effect of the geometric properties.

Flow Analysis on Near Field of Elliptic Jet Using a Single-Frame PIV (고해상도 PIV 기법을 이용한 타원형 제트의 근접 유동장 해석)

  • Shin, Dae-Sig;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.459-466
    • /
    • 2000
  • Flow characteristics of turbulent elliptic jets were experimentally investigated using a single-frame PIV system. A sharp-edged elliptic nozzle with aspect ratio(AR) of 2 was tested and the experimental results were compared with those of circular jet having the same equivalent diameter($D_e$). The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter was about $1{\times}10^4$. The spreading rate along the major and minor axis are different remarkably. The jet half width along the major axis decreases at first and then increases with going downstream. But along the minor axis the jet width increases steadily. The elliptic jet of AR=2 has one switching points at $X/D_e=2$ within the near field. Turbulence properties are also found to be significantly different along the major and minor axis planes.

Predicting Thermo-mechanical Characteristics from the 2nd Phase Fraction of Al-AlN Composites for LED Heat Sinks with FEM (유한요소해석을 이용한 방열용 Al-AlN 복합재의 제2상 분율에 따른 열-기계적 특성예측)

  • Yoon, Juil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.137-142
    • /
    • 2018
  • With the development of the electronic-materials industry, multi-functional metal-composite materials with high thermal conductivity and low thermal expansion must be developed for high reliability and high life expectancy. This paper is a preliminary study on the manufacturing technology of gas reaction control composite material, focusing on the prediction of the equivalent thermal properties of Al-AlN composite materials. Numerical equivalent property values are obtained by using finite element analysis and compared with theoretical formulas. Al-AlN composite materials should become the optimal composite material when the proportion of the reinforcing phase is less than 0.5.