• Title/Summary/Keyword: Equivalent Load

Search Result 1,188, Processing Time 0.022 seconds

Numerical Study on Designing Truncated Mooring Lines for FPSO Stability Analysis (FPSO 안정성 평가를 위한 절단계류선 모델링 수치 연구)

  • Kim, Yun-Ho;Cho, Seok-Kyu;Sung, Hong-Gun;Seo, Jang-Hoon;Suh, Yong-Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.387-395
    • /
    • 2014
  • In this paper, a numerical analysis for an internal turret moored vessel located at a 400-m water depth is conducted. The target vessel has an internal turret that is located at the 0.2 Lpp position from the fore-side, with $3{\times}4$ complex mooring lines installed around the turret circumference. To investigate the motion response of the vessel and the structural reliability of the lines, model tests were conducted. The KRISO ocean basin has a water depth of 3.2 m, which represents 192m using a scaling of 1:60. In order to precisely represent the real-scale condition, equivalent mooring lines needed to be designed. Truncated mooring lines were designed to supplement the restriction of the flume's water depth and increase the reliability of the model testing. These truncated mooring lines were composed of two different chains in order to match the pre-tension, simultaneously restoring the curve and variation in the effective line tension. The static similarities were compared using a static pull-out test and free decaying test, and the dynamic similarities were matched via a regular wave test and combined environments test. Consequently, the designed truncated mooring system could represent the prototype mooring system relatively well in the aspects of kinematics and dynamics.

Sizing Optimization of CFRP Lower Control Arm Considering Strength and Stiffness Conditions (강도 및 강성 조건을 고려한 탄소섬유강화플라스틱(CFRP) 로어 컨트롤 아암의 치수 최적설계)

  • Lim, Juhee;Doh, Jaehyeok;Yoo, SangHyuk;Kang, Ohsung;Kang, Keonwook;Lee, Jongsoo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.389-396
    • /
    • 2016
  • The necessity for environment-friendly material development has emerged in the recent automotive field due to stricter regulations on fuel economy and environmental concerns. Accordingly, the automotive industry is paying attention to carbon fiber reinforced plastic (CFRP) material with high strength and stiffness properties while the lightweight. In this study, we determine a shape of lower control arm (LCA) for maximizing the strength and stiffness by optimizing the thickness of each layer when the stacking angle is fixed due to the CFRP manufacturing problems. Composite materials are laminated in the order of $0^{\circ}$, $90^{\circ}$, $45^{\circ}$, and $-45^{\circ}$ with a symmetrical structure. For the approximate optimal design, we apply a sequential two-point diagonal quadratic approximate optimization (STDQAO) and use a process integrated design optimization (PIDO) code for this purpose. Based on the physical properties calculated within a predetermined range of laminate thickness, we perform the FEM analysis and verify whether it satisfies the load and stiffness conditions or not. These processes are repeated for successive improved objective function. Optimized CFRP LCA has the equivalent stiffness and strength with light weight structure when compared to conventional aluminum design.

A Magnetic Energy Recovery Switch Based Terminal Voltage Regulator for the Three-Phase Self-Excited Induction Generators in Renewable Energy Systems

  • Wei, Yewen;Kang, Longyun;Huang, Zhizhen;Li, Zhen;Cheng, Miao miao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1305-1317
    • /
    • 2015
  • Distributed generation systems (DGSs) have been getting more and more attention in terms of renewable energy use and new generation technologies in the past decades. The self-excited induction generator (SEIG) occupies an important role in the area of energy conversion due to its low cost, robustness and simple control. Unlike synchronous generators, the SEIG has to absorb capacitive reactive power from the outer device aiming to stabilize the terminal voltage at load changes. This paper presents a novel static VAR compensator (SVC) called a magnetic energy recovery switch (MERS) to serve as a voltage controller in SEIG powered DGSs. In addition, many small scale SEIGs, instead of a single large one, are applied and devoted to promote the generation efficiency. To begin with, an expandable mathematic model based on a d-q equivalent circuit is created for parallel SEIGs. The control method of the MERS is further improved with the objective of broadening its operating range and restraining current harmonics by parameter optimization. A hybrid control strategy is developed by taking both of the stand-alone and grid-connected modes into consideration. Then simulation and experiments are carried out in the case of single and double SEIG(s) generation. Finally, the measurement results verify that the proposed DGS with SVC-MERS achieves a better stability and higher feasibility. The major advantages of the mentioned variable reactive power supplier, when compared to the STATCOM, include the adoption of a small DC capacitor, line frequency switching, simple control and less loss.

Nonlinear Numerical Analysis for Shear Dominant RC Columns Subjected to Lateral Force (전단거동이 우세한 기둥의 비선형 해석에 관한 연구)

  • Kim Ick-Hyun;Sun Chang-Ho;Lee Jong-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.467-476
    • /
    • 2004
  • Because of crack control by steel bars after cracking the material models for reinforced concrete(RC) differ from those for plain concrete(PL). The nonlinear behavior of columns subjected to lateral load was simulated with reasonable accuracy in 3D analysis by applying distinct material models for RC and PL zone subdivided properly on the section. The shear strain is confirmed to develope unstably with ununiform distribution in out-of-plane direction. And this tendency becomes stronger as the thickness of column member increases in out-of-plane direction. If this ununiformity in strain distribution is not taken into consideration the capacity and the deformability of columns in shear dominant failure are overestimated excessively in two dimensional analysis. By introducing equivalent softening model a behavior of columns can be predicted too in two dimensional analysis.

Performance of Repaired Structural Walls with Different Shear Span Ratios (전단스팬비가 다른 보수된 벽체의 성능평가)

  • Han, Sang-Whan;Oh, Chang-Hak;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • The purpose of this study is to evaluate the capacities of repaired structural walls with different shear span ratios(1, 2, 3). Experimental tests were carried out. In this study three isolated large-scale wall specimens were made. The original wall specimens were tested until the drift reaches more than 3%. The region of the damaged specimen with the crack larger than 0.2 mm is replaced by new concrete. Also, severly distorted reinforcements were also replaced by new reinforcements. The crack smaller than 0.2 mm was cured by epoxy resin. Because of the space limitation of the laboratory the dimensions of all walls are the same. The shear-span ratio was controlled by the combination of axial and lateral force using the special test setting. All specimens were tested using the incremental quasi static cyclic load until failure occurs. Test results show that strength of repaired walls was almost equivalent to that of original walls. However, deformation capacities of repaired wall specimens are inferior to the original wall specimens.

Transverse Stress of Slabs due tp Longitudinal Prestressing in Prestressed Concrete Box Girders (프리스트레스트 콘크리트 박스 거더의 종방향 프리스트레싱에 의한 슬래브의 횡방향 응력)

  • Yang, In-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.679-688
    • /
    • 2003
  • For box girders in which the longitudinal tendon is profiled in the inclined webs, longitudinal prestressing force will induce transverse effects as well as longitudinal ones. In this paper, the method to estimate transverse effects induced by longitudinal prestressing is proposed. The concept of transverse equivalent loading which is calculated through longitudinal prestressing analysis is developed. The transverse stress in slabs of box girders due to longitudinal prestressing are investigated. The comparison of numerical results of the proposed method and those of folded plate method represents that the method is reasonable. Numerical analyses are carried out depending on the parameters such as web inclination and ratio of girder length to tendon eccentricity. Analysis results show that when only prestressing are considered the magnitude of transverse stress in slabs of box girder is not so large. However, if the other stresses due to dead and live load et al. are superposed on these stresses, it may be that the longitudinal prestressing effects are significant.

A study on structural safety evaluation of jet vane under very high temperature and dynamic pressure (초고온 동압을 받는 제트 베인의 구조 안전성 평가에 대한 연구)

  • Park Sunghan;Lee Sangyeon;Park Jongkyoo;Kim Wonhoon;Moon Soonil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.99-105
    • /
    • 2005
  • To evaluate structural safety factor of the jet vane for the thrust deflection system under the dynamic pressure and very high temperature($2700^{\circ}C$) of the combustion gas flow, the high temperature tension tests of refractory metals and 3-D nonlinear numerical simulations are performed. Through the analysis of high temperature structural behavior for jet vane, the structural safety of jet vane is evaluated, and numerical results are compared with static pound tests of jet vanes. It has been found that most of structural and thermal loading is concentrated on the vane shaft which worked as safe under $1400^{\circ}C$. From the comparison of static ground tests and numerical results, the evaluation criterion using the vane load and shaft displacement is more useful to estimate the structural safety than using the equivalent stress.

  • PDF

Comparison of Aerobic Fixed-film Process Response to Quantitative and Hydraulic Shock for the Same Increases in Mass Loading (호기성 고정생물막반응기에서 동일 질량부하의 수리학적 및 농도충격부하시 반응의 비교)

  • Ahn, Mee-Kyung;Lee, Kyu-Hoon
    • Journal of Environmental Science International
    • /
    • v.3 no.3
    • /
    • pp.285-296
    • /
    • 1994
  • The objective of this study was to examine and compare to transient response to quantitative and hydraulic shocks which produce equal changes in mass rate of organic feed in aerobic fixed-film process. The general experimental approach was to operate the system at several growth rates under steady-state(pre-shock) conditions, then to apply step changes during day 3 in dilution rate(hydraulic shock) , or feed concentration(Quantitative shock) at the same organic mass loading rate. Performance was assessed in both the transient state and the new steady-state (post- shock). Shock load of different type did not produced equivalent disruptions of effluent quality for equal increases in mass loading rate. Based on effluent concentrations, a hydraulic and a Quantitative shock at the same mass loading caused equal increase in total effluent COD, but the increase was primarily a result of suspended solids the hydraulic shock and COD in the quantitative shock. The time which effluent COD came to peak values were about 32~48 hours at the low organic loads and 52 ~ 72 hours at the high organic loads, respectively A quantitative shock produced a much greater increase in effluent COD than did a hydraulic shock at the same mass loading. Mean and peak values of effluent concentration weve increased in 2.8~4.2 times at low organic loading rate, 5.2~6.6 times at the high organic loading rate, respectively. Key words : Aerobic fixed-film reactor, Quantitative shock, hydraulic shock, mass loading rate.

  • PDF

A Modelling and Analysis of SSSC and UPFC in Static Analysis of Power Systems (IPLAN을 사용한 SSSC와 UPFC의 모델링과 정태해석에 미치는 영향 분석)

  • 김덕영;조언중;이군재;이지열
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.15-19
    • /
    • 2001
  • This paper presents an modelling and analysis of SSSC and UPFC in static analysis of power systems. SSSC is used to control active power flow in transmission lines by controlling the phase angle of the injected voltage source which is in rectangular to the line current. UPEC is used to control the magnitude and phase of the injected voltage sources which are connected both in series and in parallel with the transmission line to control power flow and bus voltage. To compare the effect of SSSC and UPFC in power system static analysis, the PSS/E simulation program is used. As the FACTS device model such as SSSC and UPFC is not provided in PSS/E yet, an equivalent load model is used. This procedure is implemented by IPLAN which is an external macro program of PSS/E. The simulation results show that UPFC is more effective to improve bus voltage than SSSC in power system static analysis.

  • PDF

Restoration Modeling Analysis for Abandoned Channels of the Mangyeong River

  • Kim, Jae-Hoon;Julien, Pierre Y.;Ji, Un;Kang, Joon-Gu
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.555-564
    • /
    • 2011
  • This study examines the potential restoration of abandoned channels of the Mangyeong River in South Korea. To analyze the morphological changes and equilibrium conditions, a flow duration analysis was performed to obtain the discharge of 255 m3/s with a recurrence interval of 1.5 year. It is a gravel-bed stream with a median bed diameter of 36 mm. The reach-averaged results using HEC-RAS showed that the top width is 244 m, the mean flow depth is 1.11 m, the width/depth ratio is very high at 277, the channel velocity is 1.18 m/s, and the Froude number is also high at 0.42. The hydraulic parameters vary in the vicinity of the three sills which control the bed elevation. The total sediment load is 6,500 tons per day and the equivalent sediment concentration is 240 mg/l. The Engelund-Hansen method was closer to the field measurements than any other method. The bed material coarser than 33 mm will not move. The methods of Julien-Wargadalam and Lacey gave an equilibrium channel width of 83 m and 77 m respectively, which demonstrates that the Mangyeong River is currently very wide and shallow. The planform geometry for the Mangyeong River is definitely straight with a sinuosity as low as 1.03. The thalweg and mean bed elevation profiles were analyzed using field measurements in 1976, 1993 and 2009. The measured profiles indicated that the channel has degraded about 2 m since 1976. The coarse gravel material and large width-depth ratio increase the stability of the bed material in this reach.